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Preface

From reasons to causes is the leitmotif of this book. The two authors came
together for the first time to explore belief revision theory and the Ramsey
Test for an analysis of the conjunction ‘because” in natural language. This
was the starting point of the epochetic approach to causation to be devel-
oped here. In a series of papers, we have explored a Ramsey Test analysis
of reasons for an analysis of causation. The theory of causation in this book
builds on these papers, but goes well beyond them. Specifically, we take
up the challenge to devise a reductive analysis of causation, which does
not take any causal or modal notions for granted.

This book has many sources of inspiration. Two of them are particularly
noteworthy. Hans Rott was the first to study variants of the Ramsey Test
for an account of reasons in everyday and scientific contexts. Wolfgang
Spohn came up with the idea to build a theory of causation on top of an
analysis of reasons. We had the pleasure to meet Hans and Wolfgang in
Munich for academic talks, which drew our attention to their work on said
topics.

The Munich Center for Mathematical Philosophy at LMU Munich was the
institutional starting point of this book. We are grateful to our teachers and
mentors for the opportunity to spend many productive years there. In par-
ticular, we would like to thank Ulises Moulines, Hannes Leitgeb, Stephan
Hartmann, and Christian List. We were fortunate to continue the project
underlying this book in other parts of the world. Holger Andreas went to
Canada to take up a professorship at the University of British Columbia.
He is most grateful to the department heads Andrew Irivine, Helen Yana-
copulos, and Noriko Ozawa for supporting his career and research there.
His work was furthermore supported by grants from the German Research
Council and Canada’s Social Sciences and Humanities Research Council.
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Upon completion of his PhD, Mario Giinther moved to the Australian Na-
tional University. He is most grateful to Alan Héjek, Katie Steele, Phil
Dowe, and Philip Pettit for feedback on the book project, as well as general
guidance and support. He then returned to the Munich Center for Mathe-
matical Philosophy as an assistant professor. His work was supported by
the Excellence Initiative of the German federal and state governments, a
junior residency in the Center for Advanced Studies of LMU Munich, and
a visiting assistant professorship awarded by Carnegie Mellon University.

The book benefitted greatly from the commentaries on our lead article ‘Fac-
tual Difference-Making” forthcoming in the Australasian Philosophical Re-
view. They made us see, for example, that a simple distinction between
deviant and non-deviant events is insufficient to capture our causal judg-
ments in some scenarios. We would like to extend special thanks to Cei
Maslen for outstanding editorial support.

Part I of the book and the forthcoming lead article propose epochetic anal-
yses of causation. One crucial difference is that the book analysis relies
on the inferential notion of an active path, which represents how an effect
depends on its cause in a causal process. This notion allows us to distin-
guish preempted from genuine causes even in the absence of events be-
tween them in the causal process. Another difference is that the book anal-
ysis does not exploit indeterminate interventions. But this difference is less
crucial because the book analysis could be enriched by such interventions
in the spirit of the epochetic analysis.

We are very grateful to Hilary Gaskin at Cambridge University Press for
supporting this project. Special thanks are also due to two anonymous
referees whose reports greatly helped us improve our theory of causation.
Finally, we would like to thank each other.
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Chapter 1

Introduction

Causation is familiar but mysterious. We understand that a cause brings
about its effect. The sunlight generated heat on the surface. An electro-
static discharge caused the thunder. His quick reaction saved the child
from drowning. We understand these causal claims swiftly and know how
to use them. Causes help us explain what is going on around us. Causes
help us intervene in the course of events to bring about certain desirable
effects, or prevent undesirable ones from occurring. Without a concept of
causation, we could not assign responsibility for one’s actions.

The mystery arises when we try to analyse causation. The relation between
cause and effect seems to resist a clean analysis. Up to now, any philosoph-
ical account of causation is plagued by counterexamples. And the accounts
that tally best with our common sense of what causes what usually assume
primitive causal relations, and so give up on a fully reductive analysis of
causation. In the light of the pervasiveness, familiarity, and importance
of causation, it is astonishing that no philosophical analysis has yet suc-
ceeded. And so the challenge to find a unified theory of causation contin-
ues to be intriguing.

The aim of this book is to analyse our concept of causation. This endeav-
our is not so much different from devising a scientific theory: our causal
judgements are the phenomena for which we seek a unified account. A
primary objective is therefore to achieve an extensionally adequate theory
of our causal judgements. To be precise, we analyse causal judgements in
scenarios which are described in terms of deterministic laws and relations,
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broadly construed. The probabilistic concept of causation is not a subject
matter of this book.

Another objective is to respect an empiricist principle which can be traced
back to Hume’s Treatise of Human Nature (1739/2001). A proper analysis of
causation may not take any causal or modal notions as primitively given.
We aim to account for our ability to make causal judgements in terms of
concepts which are less mysterious and less theoretical than causation is.
With some qualifications, our final theory of causation will be a reductive
one.

The endeavour to analyse causation seems naive in light of past failures
and challenges which have remained unanswered by even the most sophis-
ticated contemporary accounts. Some fundamental change in approach
seems necessary to come closer to a unified and extensionally adequate
theory of causation. In what follows, we outline our epochetic approach to
causation and explain why it can do better than extant accounts.

1 The Epochetic Approach

We aim to reconstruct how a candidate cause brought about a given effect.
To this end, we begin with an analysis of what it is for a proposition to be
a reason for another proposition. We explain the notion of reason by what
we call an epochetic conditional: A >> B iff (if and only if) after suspend-
ing judgment about A and B, we can infer B from the supposition of A
in the context of other propositions which we continue to believe after the
suspension of judgement.

We call this approach to conditionals epochetic in honour of Husserl’s
phenomenology. Husserl (1913/1989) recommended to begin the phe-
nomenological analysis with an operation of bracketing any judgement as
to whether an object of experience has independent existence. He called
this operation epoché, a term which is adopted from the Pyrrhonian scep-
tics. The goal is to capture the object exactly as it is experienced by the
subject of the phenomenological analysis. Our operation of suspending
judgement is motivated by a related, but different goal: to examine infer-
ential relations between the antecedent and consequent of a conditional so
as to capture some relation of dependence between the two.
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The epochetic approach to conditionals suggests an epochetic approach to
the notion of reason. We say that A is a reason for B iff A and B are be-
lieved, and A > B. Since we are interested in an analysis of our causal
judgements, the epochetic conditional > is relativized to an epistemic state
of an agent. It is a preliminary and simple inferential analysis of the notion
of reason, which however proves sufficiently powerful to build an analysis
of causation on top of it.

How do we get from reasons to causes? Further constraints on the infer-
ential relations between the antecedent and consequent of our epochetic
conditional are needed for this. Throughout this investigation, we study
inferential pathways from causes to effects. Novel ways to distinguish be-
tween genuine and non-genuine causes will emerge from this study. Some
inferential pathways turn out to be distinctive of genuine causal relations.
Others do not.

Our main thesis is that the study of inferential pathways—from causes to
their effects—allows for a more accurate account of causation than extant
counterfactual and regularity theories. It does seem to matter how we can
infer the effect from a candidate cause. Mere inferability and regularity
are not enough. Likewise, mere counterfactual difference-making, how-
ever refined, does not suffice. At the core, our approach to causation is to
reconstruct causal pathways in terms of inferential pathways on the basis
of a prior operation of suspending judgement.

We will give an overview of the inferential constraints in terms of which
our theory characterizes genuine causal relations below. Not surprisingly,
a single constraint will not do. But we keep the complexity of our the-
ory at a moderate and intuitively accessible level. The reconstruction of
causal pathways in terms of inferential ones is motivated by ideas and in-
tuitions about causation as production. Hall’s seminal paper on the distinc-
tion between two concepts of causation—counterfactual dependence and
production—served as an important source of inspiration (Hall 2004). We
aim to show that our causal concept of production leads to a more accurate
and unified theory of our causal judgements.

How do we know which candidate causes are genuine and which are not?
We simply take commonsensical causal judgements—to the extent they are
widely agreed on—as phenomena to be captured by a unified theory of
causation. There is a surprisingly high degree of consensus as to which
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events are considered genuine causes of corresponding effects. It is uncon-
troversial, for example, that preempted causes do not qualify as genuine.
Most people agree that in a scenario of overdetermination all overdeter-
mining causes are genuine. While such intuitions may be overruled by
theoretical considerations, it has remained a desideratum to capture our
commonsensical causal judgement to a maximally possible extent. We will
further explain the overall methodology of our investigation in the next
section.

Progress in philosophical research on causation was often enabled by de-
velopments in logic. Mackie’s INUS account is based on the logic of
Boolean connectives, which was not available to Hume. Lewis’s counter-
factual account is based on the theory of variably strict conditionals, which
was developed together with the latter. Causal models in terms of struc-
tural equations have given rise to novel counterfactual accounts. In a sim-
ilar vein, we exploit further resources of modern logic to analyse our non-
probabilistic concept of causation. Specifically, we take advantage of belief
revision theory to define an epochetic operation of suspending judgement.
Logical accounts of default and abductive reasoning will be used to study
inferential and causal pathways. While the book is technical at times, it is
self-contained and requires only familiarity with classical logic. We have
worked hard to make it as accessible as possible to all readers.

2 The Concept of Causation

In his Treatise, Hume first considers the idea that causation is some neces-
sary connection between cause and effect. His criticism is strong. Such a
connection cannot be observed in concrete instances of causation. Nor can
a necessary connection between cause and effect be demonstrated by rea-
son alone. The attempt to give such a demonstration leads to the problem
of inductive reasoning.

Hume moves on to suggest an alternative: causation may be understood
in terms of a regular connection between cause and effect. This account,
however, may also be criticized with reference to the problem of induc-
tive reasoning: which reasons do we have to think that a certain regularity
observed in the past will also hold in the future? Hume addressed this
problem by explaining the origin of our idea of regular connection in terms
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of custom and habit. This has led him to an epistemic interpretation of the
concept of regular connection in his analysis of causation:

A cause is an object precedent and contiguous to another, and
so united with it, that the idea of the one determines the mind to
form the idea of the other, and the impression of the one to form a
more lively idea of the other. (Hume 1739/2001, Book I, Part 3,
Sect. 14, § 31, our emphasis)

Hume even went on to suggest an epistemic account of necessity in order
to make sense of the old idea of necessary connection between cause and
effect (Hume 1739/2001, Sect. 14 in Part III of Book I). Thus we find epis-
temic and non-epistemic accounts of the condition of regular connection in
Hume’s Treatise. Why should the epistemic account fare better with regard
to the problem of inductive reasoning? Arguably, some determination of
the mind is accessible at the time of the respective causal judgement. We
can be aware of such a determination without knowing whether or not the
respective regular connection continues to hold in the future.

We must nonetheless wonder how the epistemic account of regular con-
nection is related to the non-epistemic one. Is one more fundamental than
the other when it comes to understanding what causation is? This ques-
tion has troubled Hume scholars for a long time (see, e.g., Robinson (1962),
Richards (1965), and Beebee (2011)).

More contemporary work on causation is facing a similar tension. Mackie
(1980, p.1), for example, understands the analysis of causation as an on-
tological project. It must answer the question of what causation is in the
objects. This qualification is deemed misleading by Hausman (1998, p. 8n).
He argues that it is rather futile to distinguish between an inquiry into the
meaning of the causal concept and an analysis of causation in the objects.
In defence of Mackie’s methodology, one might reply that no such distinc-
tion was envisioned. Paul and Hall (2013, p. 249) hold that a unified theory
of causation may have the form of an ontological reduction or a conceptual
analysis. We follow suit. To our mind, it may well be fruitful to pursue the
two projects independently from one another, and explore their relation-
ship at a later stage of inquiry.

Our theory of causation clearly has the form of a conceptual analysis. It
qualifies as such in at least two dimensions. First, we take our causal judge-
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ments in science and everyday life as phenomena for which we seek a uni-
tied account. Second, we aim to tell a story of how human minds come to
make such judgements which is cognitively plausible. We understand the
notion of cognitive plausibility along broadly empiricist lines. Basically,
our empiricism comes down to the belief that some concepts are less mys-
terious than others. We think that a concept A is less mysterious than a
concept B iff A can be used and applied without relying on applications
of concept B, at least in the majority of its applications. For example, we
believe that spatial relations among events—which are observable by un-
aided perception—are less mysterious than, say, the concept of electromag-
netic force.

To give an example, suppose we see an apple falling toward the ground.
We think this motion is caused by the gravitational force of the Earth. But
the motion of falling can be observed independently of the causal relation
and the gravitational force. It seems impossible, by contrast, to observe
gravitational forces independently of the trajectories of concrete objects.
This conceptual order seems invariant under any training.

To assume that some concepts are less mysterious than others is not to as-
sume that there are concepts which are free of any mystery. We merely
believe that some concepts are more theoretical—and in this sense more
mysterious—than others. Our empiricism is inspired by work in philos-
ophy of science which may be described as post-logical empiricist in that a
number of doctrines of early logical empiricism are dropped, without how-
ever giving up entirely the project of a rational reconstruction of science.
Specifically, people in the structuralist school have tried to recognize an
ordering of theoreticity among the concepts which are used in the applica-
tions of scientific theories. This order may well be a partial one, specifically
if networks of scientific theories are considered.!

When setting out to analyse causation, Hume took it for granted that tem-
poral relations among observable events are less mysterious than causal
relations. In Part II of this book, we aim to show that Hume was on the
right track and that contemporary alternatives to the Humean convention
fail to give us a comprehensive account. Our reductive theory of causation
is motivated by the belief that temporal relations are less mysterious than

1See Sneed (1979) and Balzer et al. (1987) for the canonical expositions of the structuralist
approach to science. See Andreas (2020, Ch. 5) for an axiomatic account of the structuralist
representation scheme and some further work on the structuralist criterion of theoreticity.
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causation, but it does not depend on this belief. From a logical point of
view, it makes perfect sense to analyse a concept A in terms of concepts
B, C, and D, without assuming any conceptual hierarchy. The presumed
order of theoreticity and mysticity remains nonetheless important for the
theory to be read as an epistemological story about causation.

Our epistemological story makes some idealizing assumptions about the
logical capacities of the human mind. Most notably, the analysis of the
inferential pathways from candidate causes to their effects is spelled out in
terms of natural deduction. This inferential approach is motivated by ideas
about causation as production. But we do not claim that our brain is at
bottom a logical machinery. The use of logical concepts is a methodological
principle, comparable to the use of mathematics in science.

An important motivation for us to once again take up the Humean project
of analysing causation is that we have nowadays much more advanced and
refined logical tools available than Hume and even Carnap had at their
time. Specifically, we will use concepts of belief revision theory for our
epistemological story about causation. The use of logical concepts will be
justified by the result of our investigation—a unified theory of causation.
Further justifications may be given, but we will not discuss the relationship
between logic and philosophy here.

Ideally, an epistemological analysis of causation should be in harmony with
some viable metaphysics of causation in the objects. The former analy-
sis should make plausible how our causal judgements capture causal rela-
tions in the world. Reversely, a viable metaphysics of causation should be
connected with some epistemological story of how human minds come to
make causal judgements.

We will outline in the Conclusion how our epistemic analysis may be ex-
tended to a theory of causation in the objects. The focus of this book is
nonetheless on the epistemology of causation by way of a rational recon-
struction of our concept of causation. Our theory is aimed to be as meta-
physically neutral as possible in that it may be connected to a variety of dif-
ferent views about human minds and the world. For this reason, we will
avoid as much as possible commitments to specific accounts of proposi-
tional meaning, events and absences, event types, etc. Further connections
to the metaphysics of causation may be explored at a later stage of inquiry.
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3 Reasons

Our account of reasons originates from an epistemic approach to causation
due to Ramsey. As is well known, Ramsey (1931a, footnote 1) proposed
the following evaluation procedure for conditionals which is known as the
Ramsey Test:

If two people are arguing ‘If p will 4?” and are both in doubt as
to p, they are adding p hypothetically to their stock of knowl-
edge and arguing on that basis about g; so that in a sense ‘If p,
q" and ‘If p, 7" are contradictories.

This epistemic evaluation recipe for conditionals has received probabilistic
and non-probabilistic interpretations.? The core of the latter interpretation
has been pointedly expressed by Stalnaker (1968, p.102):

First, add the antecedent (hypothetically) to your stock of be-
liefs; second, make whatever adjustments are required to main-
tain consistency (without modifying the hypothetical belief in
the antecedent); finally, consider whether or not the consequent
is then true.

Now, we suggest a subtle variant to this test. Instead of adding the an-
tecedent right away and then making adjustments to our beliefs in order
to ensure consistency, we begin with suspending judgement on the an-
tecedent and the consequent. The subsequent operation of adding the an-
tecedent will then always lead to a consistent set of beliefs. In brief, we
suggest to strengthen the Ramsey Test as follows:

First, suspend judgement about the antecedent and the con-
sequent. Second, add the antecedent (hypothetically) to your
stock of explicit beliefs. Finally, consider whether or not the
consequent can be inferred from your explicit beliefs.

2For a unified account of probabilistic and non-probabilistic interpretations of the Ram-
sey Test, see Giinther and Sisti (2022).



CHAPTER 1. INTRODUCTION 9

Let us write A > B iff B can be inferred from A after judgement has been
suspended about A and B. Then we say that A is a reason for B iff A and
B are believed, and A > B. This notion of reason is obviously relative to
the beliefs of an epistemic agent. After all, we aim to devise a theory of our
causal judgements.’

This account of the notion of reason is preliminary since it faces some ob-
vious counterexamples. Specifically, there remain symmetry problems. For
example, given A, B, and A A B are explicit beliefs, we have to say that
A is a reason for A A B, and vice versa. The latter seems counterintuitive.
Such symmetry problems, however, disappear once we impose further con-
straints on the inferential relations between antecedent and consequent of
our epochetic conditional.

The relation of reason is commonly considered a relation between proposi-
tions rather than sentences. When writing A > B, we assume that A and B
are sentences which have some form of propositional meaning. We do not
explore or offer any theory of propositions here. The reader may think of
propositions in terms of whatever account she thinks meets best her philo-
sophical desiderata. We assume only that the account of propositions is
consistent with the principles of classical logic.

4 Causes in Causal Models

How do we get from an analysis of the notion of reason to a theory of
causation? How do we get from reasons to causes? The key idea is to
reconstruct how a given cause may have brought about its effect along an
active path. The notion of active path is explained in terms of inferential
pathways. We will now give an overview of the conditions in terms of
which we characterize reasons which stand for genuine causes.

Our analysis is divided into two parts. In Part I, our task is a little eas-
ier since we use causal models along the lines of Halpern (2000) and Pearl
(2009). Such models take certain causal relations as elementary and primi-
tive. A causal model analysis is not reductive unless the notion of structural
equation is explained in non-causal terms. A great deal of research has been

3We assume here that the antecedent of >> is not a contradiction and the consequent is
not a tautology. For a technical way to restrict conditionals to contingent antecedents, see
Giinther (2022).
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done on how to define causation relative to a causal model. But it proved
surprisingly difficult to analyse complex causal relations, even if the ele-
mentary ones are given by a causal model. The challenge is to define the
notion of cause in such a manner that our causal judgements are captured
as comprehensively as possible in a large variety of different scenarios. For
this to be achieved, causal scenarios known as overdetermination, early and
late preemption, prevention, omission, switches as well as a number of variants
and combinations thereof have been studied extensively.

To make further progress, we devise a system of natural deduction with
structural equations. This system basically complements the semantic ac-
count of causal models in Halpern (2000). Then we define our epochetic
conditional >> for causal models in terms of natural deduction. Once such
a conditional is in place, only two inferential constraints are needed to cap-
ture genuine causal relations.

Suppose it holds that C > E, where the conditional > is defined for causal
models. This means that there is a deduction of E from the assumption
C, which uses further premises in the form of structural equations and,
possibly, information about the context of the presumed causal process.
The set of further premises neither implies C nor E since we suspended
judgement on the candidate cause and its effect. When is C a genuine cause
of E?

First, we require that there is an active path from C to E. An active path
from C to E is an inferential path such that each inferential step—on the
way from C to E—depends on the assumption of C as a premise in the
deduction of E. The rationale for this is that each inferential step to an event
or absence may be interpreted as a section in a causal process which was
started by the candidate cause. We will show that preempted causes violate
the condition. If you like, we reconstruct a concept of factual dependence
of the effect on the candidate cause.

Second, genuine causes are required to satisfy a condition of deviancy. A
genuine cause must be at least weakly deviant—in the sense that it goes
against a norm or default law. Also, if there are events or absences in the
context of the candidate cause which are weakly normal, then we must not
suspend judgement on them when looking for an agnostic model with an
active path. We call an event or absence weakly normal iff it conforms to a
norm or default.
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Such are the cornerstones of our analysis in Part I. In sum, causation is
inferential dependence along causal pathways such that each section of
each pathway depends on the candidate cause. We will explain the notion
of inferential dependence in terms of an epochetic conditional and natu-
ral deduction. This notion is relative to an epistemic state. Also, genuine
causes and their context satisfy a condition of deviancy and normality, re-
spectively. Consideration of deviancy is needed to analyse causation by
omission, some scenarios of prevention, and realistic switches. The de-
viancy condition applies nonetheless to genuine causes in other scenarios
as well since our account of deviancy implies that any occurring event is at
least weakly deviant.

The primary objective of Part I is to analyse causation such that our judge-
ments in concrete causal scenarios are captured as adequately as possi-
ble. Our analysis makes important progress on this project, sometimes
referred to as the study of actual causation. It is the first analysis to cap-
ture our commonsensical causal judgements in all of the scenarios studied
throughout chapters 3 to 6 and beyond. It captures, in particular, our causal
judgements in scenarios such as overdetermination, preemption, short cir-
cuits, switches, prevention, omissions, as well as variants and combinations
thereof. The currently popular counterfactual accounts already face serious
problems with the just mentioned scenarios.

We argue elsewhere in detail that our epochetic analysis outcompetes the
most advanced counterfactual accounts with respect to the adequacy of our
causal judgements (Andreas and Giinther 2025a). While we think we have
made substantive progress in analysing causation, we don’t think that we
have solved all problems of actual causation. This is why we would like to

encourage our readers to challenge and to improve the analysis presented
here.

“The analysis of this book evolved out of a series of epochetic analyses, published in
Andreas and Giinther (2021a,b, forthcominga) and (forthcomingb). It goes beyond the lat-
ter work in particular by the study of causal pathways via the notion of an active path.
Otherwise, the analysis presented in Andreas and Giinther (forthcomingb) is almost iden-
tical to the one in Part L. It’s finally worth noting that our epochetic analysis gives rise to a
regularity theory of actual causation (Andreas and Giinther 2024a,b).
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5 The Reductive Analysis

In Part II we take up the challenge to devise a reductive analysis. No struc-
tural equations are available anymore. We begin with an explanation of
the basic concepts of belief revision theory in the tradition of Gardenfors
(1988). Then we define an epochetic conditional for sets of explicit beliefs.

Again, suppose it holds that C > E, where the conditional > is now de-
fined for a language of classical propositional logic or classical first-order
logic. This means that there is a deduction of E from the assumption C in
an epistemic state which is uninformative on C and E. The deduction uses
laws of a background theory as premises. Importantly, we work only with
a minimalist, non-modal, and syntactic notion of law, which is weaker and
less demanding than some substantial notion of a law of nature. When is C
a genuine cause of E?

At this point, the Humean convention comes into play: a cause precedes its
effect. Of course, we cannot adopt this convention in a simple and straight-
forward manner. Specifically, we need to address well-known problems
and objections to this convention: the problem of spurious causation, in-
stances of simultaneous causation, and the conceptual possibility of back-
ward causation. Part II is centred on these problems.

The problem of spurious causation is perhaps the hardest to be dealt with
when one wishes to reconsider a Humean approach to causation. The prob-
lem may be summarized by the well-known dictum that correlation is not
causation. Sometimes there is a correlation between two events such that
one precedes the other, but we do not consider the preceding event a cause
of the other. The correlation between a drop of the barometer and stormy
weather is a famous example, if only a probabilistic one. For a determinis-
tic example, consider an event of lightning. A bright lightning flash in the
sky is followed by thunder. The correlation is relatively strict, depending
on further details of the description of the events. But we do not consider
the flash a cause of the thunder. The correlation is rather due to a common
cause, given by an electrostatic discharge between a cloud and the ground.

We solve the problem of spurious causation by two constraints on the in-
ferential pathway from the candidate cause C to the effect E. First, it is re-
quired that each inferential step to an event or absence is forward-directed
in time in the weak sense of not being backward-directed. No event or
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absence asserted in the premises of an inferential step—to an event or
absence—may be temporally later than the occurrence or absence inferred.
This condition may be described as a proof-theoretic variant of the Humean
convention. Roughly, the Humean convention must not only hold for the
pair of cause and effect, but also for each inferential step from the candidate
cause to the effect.

Second, we require that each law used on the inferential path from C to E is
non-redundant. The notion of law itself is minimalist, non-modal, and syn-
tactic, as indicated above. Once such a minimalist notion of law is in place,
we impose the constraint of non-redundancy. We define this constraint by
means of a formal system of abductive reasoning. In the background is the
best system account of laws in philosophy of science. Once again we draw
on the work of Ramsey, who suggested such an account of laws in his essay
on causation (1931a, p. 242).

The first formulation of the best system account goes back to Mill
(1843/2011, Book III, Ch.IV). Notably, Mill also suggested to overcome
problems of spurious causation by invoking some notion of nomic regular-
ity. The latter notion in turn is explained by his best system account. Our
contribution to this line of research is to define the notion of non-redundant
law in terms of an inference system of abductive reasoning and an inferen-
tial variant of the Humean convention. No causal notions are used in our
account of abductive reasoning.

We show that our analysis avoids problems of spurious causation for a
number of well-known scenarios. Specifically, we show that it delivers the
intuitive verdicts for all causal scenarios in which the common cause is
embedded in a conjunctive or a disjunctive scenario. Moreover, we apply
our analysis to scenarios of spurious causation for which such an embed-
ding is less easy to identify. Our solution to the problem of spurious causa-
tion has some interesting connections to the regularity theories by May and
Grafshoff (2001), and Baumgartner (2013), and the independence theory by
Hausman (1998).

The problem of simultaneous causation turns out to be less challenging. We
study some scenarios of this type of causation, and come to the following
observation: there is an asymmetry between the simultaneous cause and its
effect in that we have a Humean causal explanation for the cause which is
independent of the effect, but not vice versa. A Humean causal explanation



CHAPTER 1. INTRODUCTION 14

is simply one which satisfies the Humean convention. Thus we can account
for simultaneous causal relations in terms of Humean causal explanations.

There remains to discuss the problem of backward causation. Obviously,
if there is backward causation in our world, the Humean convention is not
tenable, at least not without further modification. The latter qualification
is important, though. If we had some criterion of backward causation in
place, the Humean convention may still be used as default criterion for
the distinction between causes and their effects. Dowe’s (1996) account
of backward causation is guided by a similar line of reasoning. He pro-
posed a disjunctive approach to the direction of causation, which is based
on two different, albeit related criteria to distinguish between causes and
effects. One of the two criteria is, at least extensionally, equivalent with the
Humean convention. We outline how Dowe’s proposal may be adopted for
our reductive analysis of causation.

At the same time, we come to observe that there is no commonly agreed
understanding of the notion of backward causation to be found in the liter-
ature. It has remained very much an open problem what it could mean to
find evidence for backward-directed causal relations in the world. We show
that Price’s (1996) very nuanced and well motivated account of backward
causation amounts to a disjunctive approach to the direction of causation
as well. Surprisingly enough, one of the two disjuncts is based quite di-
rectly on the Humean convention. This result indicates that a disjunctive
approach may be unavoidable when one wishes to allow for the possibility
of backward causation. The problem is that we are lacking a unified ac-
count of forward and backward causation which explains to us what kind
of evidence, however indirect, we could in principle obtain for the two
types of causation, respectively. Lewis’s (1973a) counterfactual analysis of
causation is no viable option for such a unified account.

Once again the primary objective of our analysis in Part II is to develop
an extensionally adequate theory of causation—adequate with respect to
our causal judgements in science and everyday contexts. This theory is
aimed to be reductive in that it does not take any causal or modal notions
as primitively given. Nor do we take some distinction between laws of
nature and accidental generalizations for granted.

Our reductive theory may be summarized as follows. Causation is nomic
inferability of the effect from the cause—in an epistemic state which is un-
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informative on the cause and the effect. No inference to an event or ab-
sence on the inferential path from the cause to the effect must be backward-
directed in time. Causes precede their effects—unless the cause is simulta-
neous with the effect, and we have a causal Humean explanation of the
cause which is independent of the effect, but not vice versa.

Finally, we will show in the Conclusion how our reductive analysis may be
used as a foundation of deterministic causal models with structural equa-
tions, thus establishing a connection between the causal model analysis in
Part I and the reductive analysis in Part II. We do not offer a translation of
non-causal laws into structural equations, but explain what it could mean
that a causal model with structural equations is verified by an epistemic
state which does not contain explicitly causal beliefs, given our reductive
theory. Causal models are thus traced back to epistemic states with beliefs
about causal scenarios, where these beliefs are couched in a language free
of causal and modal notions.

Spohn’s (2006, 2012) work on causation has served as an important source
of inspiration for Part II. Most notably, Spohn begins with an analysis of
the notion of reason, and then builds an analysis of causation on top of it.
Also, he makes use of the Humean convention to account for the direction
of causation. At the same time, we go beyond his ranking-theoretic analysis
by a detailed study of inferential and causal pathways. Specifically, we
devise a properly reductive solution to the problem of spurious causation.
Spohn’s solution to this problem doesn’t seem to meet this standard, as
will be shown in Section 13 of Chapter 8. We have aimed to give the most
elaborate defence of the Humean convention to be found in the literature
so far.

6 Events

Causation is a relation among events. This dictum has been expressed in
much of the more contemporary work on causation. We follow suit. We do
not see strong enough reasons to consider alternative relata of the causal
relation.

Events may or may not occur. If an event does not occur, we say that it is
absent. The absence of an event is simply called an absence. We do not have
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an elaborate theory of absences, let alone negative events. Unlike a fact, it
is conceptually possible for an event to be absent from the actual world.

Absences are sometimes considered causes of events, and vice versa. We
should therefore clarify that causation is a relation among events and ab-
sences. Causation by an absence is troublesome for the metaphysics of cau-
sation. But it is less so for an analysis of the conceptual relations between
causal and non-causal statements.

Events are commonly thought to be concrete. An event concerns a partic-
ular object in space and time, a relation among such objects, or a specific
spatiotemporal region. Again, we follow suit. It is worth noting, though,
that events are often not fully specified down to the level of particular ob-
jects in the discussion of a causal scenario.

Take the famous example of two children throwing rocks at a bottle. Suzy’s
rock hits first, and causes the bottle to shatter. Billy’s rock comes a little
later, and so doesn’t get to hit the bottle. His throw of a rock is preempted.
Even though we know the names of the two children, the events are not
specified to the extent that we can identify concrete events with a precise
spatiotemporal location. Suzy and Billy are more like fictional characters
in a causal story, which is supposed to deliver a more general insight into a
class of causal scenarios.

The lack of specificity is even more obvious in the case of neuron diagrams.
Such diagrams are so simple that it seems impossible to identify uniquely a
concrete neuronal system which a given diagram is supposed to represent.
A neuron diagram in a philosophy paper seems rather a simplified and
schematic representation of a class of causal scenarios.

We must wonder whether the lack of specificity of a causal model is a virtue
or a problem. Suppose the design and the study of a causal model is con-
fined to token-level causation. This is the level of concrete and specific
events. Then the lack of specificity is certainly a problem. It may be ad-
dressed by, charitably, assuming that some details are left out from the
causal model for simplicity. The idea is that, ultimately, the author of a
causal model always has a concrete scenario of causation in mind. This
way of fixing the problem may or may not be satisfactory, but let’s assume
it is.

Suppose now, by contrast, the variables of a causal model are intentionally
not fully specified. They stand for event types rather than specific events.
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The instances of the event types must satisfy certain constraints. For ex-
ample, one throw of a rock may stand in the relation of preceding another
with respect to a target. But these constraints do not enable us to identify
specific events. They are like the axioms of a scientific theory which have
different interpretations, all of which satisfy the axioms equally well. The
Peano axioms are a case in point. The successor function and the symbol
for the number zero may be interpreted in different ways without violating
any of these axioms. In brief, any infinite sequence of objects satisfies the
Peano axioms. In a similar vein, we can interpret the variables for Suzy’s
and Billy’s throw of a rock by different, albeit related events without vio-
lating any of the structural equations of the causal model.

On the latter perspective, a causal model determines a complex concept
which may be applied to a variety of different, fully specified causal sce-
narios. Token-level causation comes into play when a causal model is
applied to a scenario of fully specified events. In the absence of such an
application, all causal claims concerning the model are at the type level.
While causal models of scenarios such as overdetermination and preemp-
tion may be less general than the models devised by scientists, they exhibit
nonetheless some level of generality. Causal modelling is arguably not so
much different from applying some axioms of whatever framework of sci-
entific theories to certain phenomena. The view that a causal model defines
a complex concept—which applies to a range of concrete scenarios—may
be further elaborated by means of set-theoretic predicates, as explained in
Suppes (1957) and Sneed (1979).

Our analyses of causation are open to both readings of causal models. We
find the more abstract view attractive, but it is not an assumption of our
theory of causation. If adopted, the variables of a causal model stand for
event types or, equivalently, incompletely specified events. If rejected, the
variables are to be read as referring to specific events. To distinguish be-
tween specific events and event types is not to deny that events are con-
crete. Event types may be conceived of as classifications of events.

Let’s briefly exemplify our claim that a causal model may be used to cap-
ture causal relations at the type-level. In a deterministic setting, it is rare
to find cases in which the presence of one property causes the presence
of another without further qualifications. Standard examples of type-level
causal claims are taken from probabilistic causation, such as the statement
that smoking causes cancer. However, we may have simple determinis-
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tic causal relations at the type-level in at least some idealized systems of
physics. Take the claim that total Newtonian forces cause a body to acceler-
ate. That’s universally true in all systems described by classical mechanics.

We can represent the causal relation in question by a causal model in a
straightforward manner. Let the variable F stand for the presence of a total
Newtonian force on an object a. Further, let A stand for the object a hav-
ing an acceleration whose value is greater than zero. Using the standard
notation of causal models from Pearl (2009), we can simply write A = F
to express a very simple deterministic causal relation. Note that the letter
a merely serves as placeholder for an object which is not further specified.
This is how we can express generality of the causal model.

Things are more complex when we study causal models of overdetermina-
tion, preemption, etc. Then we study causal relations in types of causal
scenarios rather than type-level causal relations which are supposed to
hold between properties directly. The activation of a neuron in a scenario
of overdetermination, for example, may be understood as a placeholder
for events which have in common that another event is present which is
equally sufficient for some effect in question. On this reading, causal mod-
els specify types of causal scenarios.

For clarification, it may be helpful to distinguish between two types of
type-level causal relations. One concerns relations among properties, as in
the statement that total forces cause bodies to accelerate. Another is about
causal relations in types of causal scenarios. The former type is of little
interest in the context of deterministic causation. But the latter type has
attracted a great deal of research for quite some time.

Furthermore, a note on the relationship between events and their descrip-
tion is in order. The description of an event may be fine-grained or coarse-
grained. We can speak, for example, of the event that the tennis ball hit
the ground behind the baseline. Or we can say that the tennis ball hit the
ground exactly two metres behind the baseline. Also, we can say that the
tennis ball hit the ground exactly two metres behind the baseline at a spe-
cific location and a specific time, say the Northern side of the tennis court
at Roland Garros Stadium in Paris on 8 June in 2025 at 4:05:30 pm.

The different descriptions in question may be relevant for the evaluation of
causal claims. Suppose we are indeed interested in the causes of a concrete
event of a tennis ball hitting the ground behind the baseline at your local
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tennis court. Further, suppose the wind was moderate, but it was not com-
pletely calm. Then it makes a difference whether or not we furthermore
specify that the ball hit the ground exactly two metres behind the baseline.
This is so because it’s entirely plausible to say that the wind is a cause of the
ball hitting the ground two metres behind the baseline, if only a conjunctive
one. It’s one causal factor of the effect in question. By contrast, we should
not say that the wind caused the tennis ball to go out behind the baseline
because moderate wind never drives a tennis ball away by two metres.

The relationship between events and their description is an open philo-
sophical problem. Do phrases like ‘Caesar’s death’, ‘Brutus’s killing Cae-
sar’, and ‘Brutus’s stabbing Caesar’ refer to the same event? Kim (1969)
pointed out substitution problems in explanatory and causal statements if
we affirm this question. We have just observed an instance of such a prob-
lem: replacing a coarse-grained description of an event by a more fine-
grained one in a causal statement may well lead to a change of truth value.
Davidson (1969) nonetheless maintained that events may be redescribed in
wildly different ways. The above phrases concerning the death of Caesar
all refer to the same event. Despite apparent substitution problems, David-
son held on to the view that events are the relata of the causal relation.

The nature of events and their identity criteria is a pressing problem for a
fully-fledged metaphysical account of causation. It is less pressing for our
endeavour to analyse the concept of causation. In Part I of this investiga-
tion, our analysis is relative to a causal model. In Part II it is relative to
an epistemic state. Events are therefore always given to us through a de-
scription and conceptualization. Such descriptions may be fine-grained or
course-grained. There is no need to make a decision as to whether events,
in general, are fine-grained or coarse-grained. However, we should clarify
that it’s events under a description which are the relata of causal relations
in our analysis.

There remains to discuss one problem concerning events. Our frameworks
in both Part I and II use variables and sentences which stand for events.
Do these variables and sentences have to stand for distinct events? The re-
quirement in question is crucial to reductive counterfactual approaches in
the tradition of Lewis (1973a). Suppose we have a variable for precipitation
and one for snowfall. Then it holds true that, had there been no precipita-
tion, there would have been no snowfall. However, we should not infer
from this that precipitation is a cause of snowfall.
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Thanks to the Humean convention, our analysis avoids mistaken causal
verdicts arising from non-distinct variables, at least to a large extent. Since
there is no temporal difference between snowfall and precipitation in the
scenario in question, neither counts as cause of the other. Nor is the tennis
ball hitting the ground two metres after the baseline a cause of the tennis
ball going out. Fine-grained and coarse-grained descriptions of what we
intuitively consider to be the same event may well co-exist in one and the
same account of a causal scenario.

Things are less clear-cut when we study scenarios of simultaneous cau-
sation in Part II, though. In the absence of an explicit requirement that
the variables of a model refer to distinct events, some relations of ground-
ing qualify as relations of simultaneous causation. This may either be a
problem or a virtue, depending on your view of the relationship between
grounding and causation. Brentano, for example, considered causation as
a type of grounding.’ Wilson (2018) has argued for the view that ground-
ing is a type of causation. We will take a closer look at some scenarios of
grounding and simultaneous causation in Chapter 9, but do not attempt at
a general characterization of grounding here. Let’s therefore take the re-
quirement that the variables of a model refer to distinct events as optional
for our analysis.

The subject matter of this book is deterministic causation. Broadly con-
strued, deterministic causation is not confined to causal scenarios which
are governed by strict laws which hold without any exception. This is not
so for two reasons. First, some exceptions to the laws may be dealt with
by acknowledging that a causal model almost always makes idealizing as-
sumptions. Causal models are just as imperfect as a number of scientific
models are. Second, we have nowadays formal systems of reasoning which
account for the use of ceteris paribus laws without probabilistic notions.
Details will be explained in Part II.

One word on pluralism about causation is in order. This position has been
suggested and recommended along different dimensions. Most obviously,
we distinguish between probabilistic and deterministic causation. More-
over, the distinction between type and token-level causation has received a
great deal of attention in the literature. Hall (2004) suggested to distinguish
between causation as production and counterfactual dependence. Hitch-

5See Schnieder (2014) for a detailed discussion.
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cock (2007) critically examines the distinction between the scientific, the
folk attributive, and the metaphysical concept of causation. More recently,
Fischer (2024) argued for the distinction between total, path-changing, and
contributing actual causation. This list of distinctions is not exhaustive.

Our theory aims to be as monist as possible about deterministic causation,
and so we don’t adopt a pluralist position. We have just argued that it
captures deterministic causal relations at both the token and the type level.
Part I is concerned with everyday causal judgements, while Part II focuses
on causal relations in science. The two parts are merged into a unified the-
ory in the final chapter of the book. For now, the theory is confined to
deterministic causation, broadly construed. However, there is work under-
way which generalizes our theory to probabilistic causal relations.

7 Advantages over the Counterfactual Approach

Our epochetic theory says that causation is inferential dependence along an
active path from cause to effect. Through this notion of inferential depen-
dence we aim to reconstruct the idea that a given effect factually depends
on its cause. In brief, inferential dependence reconstructs some concept of
factual dependence. No notion of counterfactual dependence is needed in
our theory. In this sense, it is a proper alternative to the currently popular
counterfactual accounts of causation.

Our theory makes important progress. It has, in particular, three major ad-
vantages over the most advanced counterfactual accounts. First, it captures
more causal scenarios and some for the first time. Second, it is conceptually
more unified than the most advanced counterfactual accounts. Third, our
theory is properly reductive. Let’s briefly explain why our theory has these
advantages.

In Part I, we develop our causal model analysis of causation and show
that it captures our commonsensical causal judgements in all of the sce-
narios studied in chapters 3 to 6. No other account we are aware of—
counterfactual or not—achieves this result. Our analysis is the first to ac-
count for our causal intuitions concerning some switches. It furthermore
succeeds in capturing the causal nature of both norm-compliant actions
and norm-deviant omissions. More generally, it recognizes normal events
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and deviant absences as causes without falling prey to a proliferation of
causes.

Another important result concerns the problem of Schaffer’s (2000) trump-
ing preemption. We solve this problem using only a minimal model of the
causal scenario. For this result to be achieved, it is essential that our frame-
work of causal models comes with both a model-theoretic semantics and
a system of natural deduction. The latter is exploited in our notion of an
active path from cause to effect. By contrast, the causal model accounts due
to Hitchcock (2001), Halpern and Pearl (2005), Halpern (2015), and Gallow
(2021) rely on a purely semantic account of structural equations. They can-
not distinguish the genuine cause from the trumped cause in the minimal
model since, for them, the minimal model of trumping is semantically in-
distinguishable from the causal model of the overdetermination scenario.
All the extant causal model accounts using Pearl’s (2009) framework of
causal models face a problem here which derives from the foundation of
their framework. Further problems of the counterfactual approach to cap-
ture our causal judgements are detailed in Andreas and Giinther (2025a).

The most advanced counterfactual accounts face conceptual tensions in
their attempts to capture our causal judgements. Halpern and Pearl’s
(2005) account of causation aims to reconstruct an active causal process, and
Gallow’s (2021) the transmission of deviancy in an uninterrupted process. How-
ever, Halpern and Pearl’s account is based on two disparate ideas, as they
acknowledge with reference to Hall’s “Two Concepts of Causation’ (2004):

Our definition certainly has some features of both counterfac-
tual dependence and of production—AC2(a) captures some of
the intuition of counterfactual dependence (...) and AC2(b)
captures some of the features of production (...). (p.867)

Our epochetic theory understands causation as a type of production along
an active path. No notion of counterfactual dependence is needed in addi-
tion. And so our theory faces no conceptual tension between two disparate
ideas of causation. In this sense, our theory is conceptually more unified
than Halpern and Pearl’s (2005).

Gallow’s (2021) theory of causation looks conceptually well unified. On
closer inspection, however, his theory deviates from its own motivating
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idea, which leads to conceptual tensions. For this to be seen, consider his
outline:

the theory says that C caused E whenever both C and E are de-
viant or non-inertial events, and there is an uninterrupted pro-
cess which transmits C’s deviancy to E. (p.47)

This sounds as if the uninterrupted process transmits deviancy on each step
of counterfactual dependence from one event or absence to the next. How-
ever, Gallow’s formal implementation in terms of causal networks does not
demand such a gapless transmission of deviancy. He deviates from his
motivating idea because otherwise his theory could not recognize double
preventers as causes.

Gallow’s theory requires that both cause and effect are deviant. This means
that normal or default events can neither be causes nor effects. As a conse-
quence, his theory does not recognize norm-compliant actions and events
as causes. There is also no causation by simple prevention. Her drinking a
glass of water prevented her dehydration. Not being dehydrated is a nor-
mal absence on Gallow’s theory and so cannot be caused. We see no easy
way to repair this without even further deviating from the motivating idea
that causation is transmission of deviancy in an uninterrupted process. Our
epochetic theory faces no such problems while staying true to its core idea.

Part II presents our reductive analysis of causation. At its heart is the
Humean convention: a cause precedes its effect in time. We develop rig-
orous solutions to the problems of spurious and simultaneous causation.
Moreover, we consider the conceptual possibility of backward causation,
and show that extant accounts of backward causation may be adopted by
way of a disjunctive approach to the direction of causation. The Humean
convention remains one of the two disjuncts. The disjunctive strategy has
been suggested by Price (1996) and Dowe (2000, Ch. 8) as a means to make
sense of backward causation.

By contrast, the counterfactual approach has not made much progress on
the project of a reductive analysis since Lewis (1979). His idea to account
for the direction of causation in terms of the semantics of counterfactuals
and the overdetermination thesis is certainly original. This approach, how-
ever, runs into seemingly insurmountable problems (see Price (1996, Ch. 6),
Elga (2001), and Frisch (2005, Ch.7)). Most notably, at the micro level of at
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least some physical systems we cannot recognize asymmetric forks which
display the overdetermination of the past. Relatedly, there is the problem
of physical systems described by time-symmetric theories. We will explain
these problems and point out an additional one in Section 8 of Chapter 10.

A viable alternative to Lewis’s proposal is hard to find in the literature on
the counterfactual approach. Noordhof’s (2020) defence of this approach
emphasizes the variety of causes, and so does not attempt at a unified ac-
count of the direction of causation. Hausman (1998), Spohn (2006), and
Baumgartner and Falk (2019) have developed novel reductive accounts of
causation, but none is of the counterfactual type. Woodward’s (2003) inter-
ventionist account is of the counterfactual type, but not reductive. Menzies
and Price (1993), and Price (1996) took up the challenge to develop a re-
ductive analysis from an interventionist perspective, but the semantics of
interventionist conditionals is not worked out in greater detail.



Part I

Causes in Causal Models
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Chapter 2

Active Paths

How do we get from reasons to causes? To analyse causation, we impose
further constraints on the inferential relations between antecedent and con-
sequent of our epochetic conditional. More specifically, in Part I we use an
inference system of causal models and structural equations. Such equa-
tions encode certain elementary causal dependences among events and
absences, which are commonly taken as antecedently understood without
further analysis.

In this chapter, we begin with an account of causal models on the basis of
classical propositional logic. Using a simple semantics of truth values, we
will define a relation of entailment for causal models. Then we outline an
account of deductive reasoning with structural equations. Only two simple
inference rules will be needed for this on top of classical propositional logic.

Once we have a logical account of causal models in place, we can study in-
ferential pathways in such models, and reconstruct how a candidate cause
brought about a given effect. The key idea is that each inferential step to a
literal may be interpreted as a section in a causal process which was started
by the candidate cause. We express this condition by a constraint on the
inferential pathways leading from the candidate cause to the effect: any in-
ferential step to an event or an absence must depend on the assumption of
the candidate cause. This way we define the notion of active path from a
candidate cause to its effect.

26
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1 Causal Models

In this section, we introduce causal models and structural equations in a
logical format. This implies a moderate deviation from the standard ac-
count by Halpern (2000) and Pearl (2009). We will distinguish more clearly
than the standard account between the syntax and semantics of causal
models. Most notably, we introduce both a relation of semantic entailment
and an account of deductive reasoning with structural equations. The lat-
ter will open up new avenues for analysing causation. For we can then
study in greater detail different types of inferential pathways from pre-
sumed causes to effects. Eventually, this study results in a novel way of
discriminating between genuine and preempted causes.

We develop our account of causal models on the basis of classical proposi-
tional logic. Animportant benefit of this design choice is that causal models
require little more than propositional logic. Only truth values of proposi-
tional formulas will be used to define the semantics of structural equations
and a relation of semantic entailment. Our introduction to causal models
aims to be as accessible as possible to philosophers and people from other
disciplines interested in causation.

For the interested reader, we have written an appendix on the logic of
causal models, in which further details and results are developed. Specif-
ically, we prove soundness and completeness for our deductive system
of causal reasoning there. Moreover, we show how the restriction to bi-
nary variables—inherent in the present account of propositional causal
models—may be lifted by means of a fragment of sorted first-order logic.

The account of causal models in Part I remains restricted to binary vari-
ables, though. This restriction is not severe for mainly two reasons. First,
virtually all of the widely discussed causal scenarios can be represented us-
ing only binary variables. Second, more importantly, the generalization of
our analysis to non-binary variables is straightforward. Once syntax and
semantics of structural equations with non-binary variables have been ex-
plained, our analysis works for causal models with such variables. No fur-
ther modifications are needed. An important benefit of our design choice to
build causal models on top of propositional logic is overall simplicity. An-
other is that we can study inferential pathways between causes and effects
in greater detail.
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A brief note on variable selection is in order. Standardly it is assumed that
the variables of a causal model satisfy the principles of exhaustivity, ex-
clusivity, proportionality, and distinctness (McDonald 2020). Since we use
only causal models with binary variables which stand for events, the prin-
ciples of exhaustivity, exclusivity, and proportionality are trivially satisfied.
This claim is easy to verify. The discussion of distinctness is a bit more in-
volved, we touched on this principle in the Introduction. Are the events
represented by two different variables always strictly distinct from one an-
other? Is it possible for the cause to be contained in the spatiotemporal
region of the effect? We consider the principle of distinctness to be optional
for our theory. It is needed if one wishes to maintain a strict separation
between simultaneous causation and grounding. Details are explained in
Section 3 of Chapter 9.

1.1 Structural Equations

A causal model represents a causal scenario. In a such a scenario, certain
events occur, others do not, and there are dependences among these events
and absences. We represent events and absences by literals, and the de-
pendences by structural equations. A literal is an atomic sentence or the
negation of such a sentence. In classical propositional logic, A and —A are
the two literals of the propositional variable A.

A causal model (M, V) has two components: a set M of structural equa-
tions and a set V of literals. The literals tell us which events occur and
which do not. A € V means that the event whose occurrence is claimed by
A does in fact occur. A € V, by contrast, means that this event does not
occur. For ease of notation, we use upper case Latin letters for both events
and propositions that a corresponding event occurs. Proposition A simply
means that event A occurs.

A structural equation tells us whether an event occurs given the occur-
rences and non-occurrences of certain other events. Suppose A is a propo-
sitional variable and ¢ a Boolean propositional formula in which A does
not occur. Further, ¢ is neither a contradiction nor a logical truth, and may
not have vacuous occurrences of a variable. Then

A=¢
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is a structural equation. A variable B occurs vacuously in a formula ¢ iff
there is a formula ¢’ which is logically equivalent to ¢ such that B does not
occur in ¢’. For example, B occurs vacuously in D A (B V —B).

The equation A = ¢ tells us whether the event represented by A occurs
depending on the combination of events and absences described by ¢. We
may regard ¢ as a truth function. Its arguments represent events and ab-
sences. Its truth value determines whether A or —A. The meaning of this
determination is intended to be causal: the combination of events and ab-
sences described by ¢ causally determines whether or not the event A oc-
curs.

Causal models are thus built on the basis of a propositional language. Such
a language comes with a definite set of propositional variables. The set M
of structural equations of a causal model (M, V) must satisfy one important
constraint. For each propositional variable A of a causal model, there is at
most one structural equation A = ¢. We call A = ¢ the structural equation
of A.

For now, we take structural equations to represent elementary causal de-
pendences. The causal meaning of a structural equation is taken as primi-
tive without further analysis. We did not say anything as to when such an
equation is true relative to the world. Nor did we explain when we have
reasons to believe a structural equation. These questions will be addressed
at a later stage. In the synthesis of Part I and II, we will explain eventually
how our broadly reductive analysis of causation may serve as conceptual
foundation of causal models. This includes an account of when we are jus-
tified to accept a structural equation in a causal model.

Let us have a look at a causal model of a concrete causal scenario. Figure 1
represents a causal scenario of preemption in terms of a neuron diagram.
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Figure 1: Early preemption

If neuron C is active, it triggers the activation of D, which in turn triggers E.
C is considered a genuine cause. Neuron A, by contrast, is considered only
a backup cause, at least as long as C is active. There is a causal path from
A to E as well, but this path is not active, as it were, since it is interrupted
by C. C inhibits activation of B. If C was not active, A would activate
B, which in turn would cause E to become active. In the actual scenario,
however, B is preempted. These causal dependences may be represented
by the following structural equations:

D=C
B=AAN-C
E=DVB.

For readability, we represent causal models also in two-layered boxes. The
first box contains the structural equations, while the literals are in the sec-
ond box. The causal model of the preemption scenario, for example, is
given by the following boxes:

D=C
B=AAN-C
E=DVB
C,A,D,—B,E

It remains to discuss two explanations of structural equations which go
beyond taking such equations as elementary and primitive causal depen-
dences. Hitchcock (2001, p. 274) understands a structural equation in terms
of counterfactuals. Such an interpretation leaves the question of reduction
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open. If there is an analysis of counterfactuals in terms of non-causal no-
tions, there might be a reductive analysis of causation in terms of causal
models. But it is, to say the least, controversial whether a non-causal anal-
ysis of counterfactuals is feasible. Another problem is to distinguish true
counterfactuals with a causal meaning from those without such a meaning.
A case in point are counterfactuals which hold in virtue of some relation of
grounding. For example, there are relations of counterfactual dependence
between the diameter of a spherical object and the volume of that object.
If the diameter had been greater, the volume would have been greater as
well, and vice versa. While this type of problem is well known, it proved
very difficult to exactly characterize counterfactuals which have a causal
meaning—without using causal notions or some notion of metaphysical
grounding at the same time. We will discuss more specific problems of
Lewis’s (1973a) reductive, counterfactual analysis in Chapter 10.

Halpern and Pearl (2005, p.847) explain structural equations by reference
to mechanisms and laws. They accept that such an explanation does not
give us an analysis of structural equations in terms of non-causal notions.
Even if we had some viable account of laws of nature in place, there would
remain two problems. First, some laws of nature do not have a straight-
forward causal interpretation. The ideal gas law is a case in point. Second,
even if a law is commonly interpreted in a causal way, it is not always
possible to read the direction of causation off the notation of the law. A
case in point is Newton’s second equation F = m - a. We typically think
that forces cause accelerations, but we cannot read off this interpretation
from the equation alone. A non-causal explanation of structural equations
is hard to come by and for that reason we assume they express elementary
causal dependences.

1.2 Semantics

The second component of a causal model (M, V) has a semantic role, even
though it is given by a set of sentences. A set V of literals encodes a truth-
value assignment to the propositional variables which occur in the equa-
tions in M. We can think of V as valuation of these variables. If A € V,
then A is assigned the truth value true. If A € V, then A is assigned the
truth value false. If neither A € V nor =A € V, the truth value of A is not
directly specified and may be indeterminate.
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We can now make the formal semantics of causal models explicit. Sup-
pose V is complete in the sense that it contains a literal for each proposi-
tional variable which occurs in the structural equations. When does a such
a complete set V of literals satisfy a propositional formula ¢? We define
a satisfaction relation using the semantics of classical propositional logic.
Where |=c|, stands for the satisfaction relation of propositional logic, we
say:
Vi ¢iff Vi=a ¢ VE
In words, V satisfies ¢ iff the set V entails ¢ in the sense of classical propo-
sitional logic. Likewise, we define satisfaction for structural equations as
follows:
ViEA=¢If,V =c AiffV =¢ ¢. (VEA=9)

In simpler terms, V satisfies the structural equation A = ¢ iff both sides
of the equation have the same truth value on the valuation specified by V.
Furthermore, we say that V satisfies a set M of structural equations just in
case V satisfies each element of M:

VEMIffVi=A=¢forall A =¢in M. (VEM)

For sets I' which contain structural equations and propositional formulas,
entailment is understood in the standard way: I' |= ¢ iff ¢ is satisfied by
any complete valuation V which satisfies all members of I'. These concepts
at hand, we can define the entailment relation for causal models (M, V):

(M,V) E ¢iff MUV | ¢. (M, V) = ¢)

(M, V) thus entails ¢ iff ¢ is satisfied by any complete valuation which
satisfies both M and V. Notice that the set V in a causal model (M, V) may
well be incomplete—in the sense that it does not contain a literal for each
propositional variable which occurs in the structural equations.

Now that we know the semantics of causal models, we can explain how
suspension of judgement works for such models. Suppose (M,V) is a
causal model and L a literal in V. So L is true on this model. To suspend
judgement about L, we need to find a submodel (M’, V') of (M, V) such
that L is neither true nor false on this submodel. Put differently, a causal
model (M’, V') is uninformative on L iff (M’, V') entails none of L and —L.
We suspend judgement on L by finding such a submodel. If L is in V,
(M, V) cannot be uninformative about L.
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Our epochetic analysis begins with looking for a causal model which is
uninformative on the candidate cause and its effect. For brevity, we will
also speak of an agnostic model when referring to such a model. Suspending
judgement on a structural equation is needed only for certain causal scenar-
ios. By default, we begin with suspending judgement on literals which are
in V. Only if our analysis fails to recognize a presumed cause, we consider
causal models (M’, V') such that M’ C M.

In the scenario of preemption, for example, we can obtain two agnostic
models without suspending judgement on any structural equation: (M, D)
and (M, {—B}) are uninformative on the presumed cause C and its effect E.
Neither model entails C, E or a negation of C or E. Further agnostic mod-
els come into play when we suspend judgement on structural equations:
for any M’ ¢ M, (M',®) and (M’, {—B}) are uninformative on C and E.
However, we will constrain suspension of structural equations in ways to
be explained below.

Note that our semantics of causal model is completely analogous to the se-
mantics of classical propositional logic. The semantics of =, in particular,
does not differ from the semantics of the classical biconditional <+. A struc-
tural equation A = ¢ is satisfied by a valuation V' (given by a set of literals)
iff both sides of the equation have the same truth value on the valuation
V. This means that our structural equations are symmetric just like classi-
cal biconditionals: we can infer the left-hand side from the right-hand side
and the other way around.

The two directions of an inference with a structural equation correspond
to two different types of causal reasoning. When we infer A from A = ¢
and ¢, our inference goes from causes to an effect. We call such inferences
forward-directed. By contrast, when we infer ¢ from A = ¢ and A, our
inference goes from an effect to a sentence about its causes. We call such
inferences backward-directed. We could also call them abductive.

Forward-directed inferences are aligned with the direction of causation
since they go from causes to an effect. This does not imply that such in-
ferences are always aligned with the direction of time. We use the concepts
of forward and backward in a causal, not in the temporal sense here. Time
does not come into play in Part I, but will be important for Part II.

In an analysis of causation, one is particularly interested in the forward-
directed consequences of a causal model (M, V). In line with Halpern
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(2000) and Pearl (2009), we introduce an operation of intervention in order
to separate the forward-directed consequences from the backward-directed
ones. Our operation of intervention is basically the syntactic counterpart of
interventions as defined there.

1.3 Interventions

We have seen that the semantics of structural equations is symmetric, while
the intended meaning of such an equation favours a specific direction of
determination. If A = ¢ is a structural equation, then ¢ determines A but
not the other way around. How can we account for the direction of this
determination?

Suppose we want to determine the forward-directed causal consequences
of the occurrence of A for a causal model (M, D). We can accomplish this
by, first, removing the structural equation of A from M if there is one. Sec-
ond, we add A to the set of literals V, which is given by the empty set in
this example. Once the structural equation of A is eliminated from M, there
is no way to infer a sentence about the causes of A anymore. Backward-
directed inferences are blocked. Inferences about the effects of A, by con-
trast, may still be drawn if M contains an equation which has an occurrence
of A on the right-hand side.

The case where the valuation V in a causal model (M, V) is not empty is
more complex. We need to intervene, first, by the valuation V and then by
the premise A in order to determine the forward-directed consequences of
A. Hence, we need to define interventions by sets of literals. Suppose I
is such a set. Let us denote interventions by an operator [-] which takes a
causal model (M, V) and a set I of literals, and returns a causal model—the
submodel of (M, V) after the intervention by I. The intervention by a set of
literals is defined as follows:

<M/ V> [I] = <MI/VU I> (<M/ V> [I])

where
M ={(A=¢)eM|A¢gIand ~A ¢ I}.

M is the subset of M which contains each structural equation A = ¢ whose
variable A is not evaluated by any member of I. After intervening by I
on the causal model (M, V), the set I becomes part of the valuation of the
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resulting submodel. Note that the resulting submodel (Mj, V UI) is againa
causal model, consisting of a set of structural equations and a set of literals.
Iterated interventions are thus well defined.

Interventions may well result in inconsistent causal models. Even if the
original causal model (M, V) is consistent, M; U V U I may well be incon-
sistent. There is, however, no reason for concern. In our epochetic analysis,
we need interventions only as part of the definition of the conditional >>.
And this definition sidesteps such inconsistencies by means of a prior op-
eration of suspending judgement.!

Let us explain causal reasoning by means of interventions on a causal
model (M, V) which is agnostic as regards C and E. We are interested
in the forward-directed consequences of C in this model. These are ob-
tained by the classical consequences of (M, V)[V][C]. To be precise, a sen-
tence ¢ is a forward-directed consequence of C in (M, V) iff ¢ is entailed by
(M, V)[V][C]. The causal model (M, V)[C]|, by contrast, may still contain
consequences of C which are obtained by a combination of backward and
forward-directed causal reasoning. This is why iterated interventions are
needed to determine the forward-directed consequences of C.

Note that (M, V)[V] differs from (M, V) in that it does not contain the struc-
tural equations of those variables which are evaluated by V. If, for example,
—Aisin V and M contains a structural equation A = ¢, then this equation
is not a structural equation of (M, V)[V]. In more formal terms, (M, V)[V]
equals (My, V), and My does not contain the equation A = ¢. Obviously,
the valuation V remains unchanged when intervening by V.

Recall why the distinction between (M, V)[V] and (M, V) is important.
(M, V)[V] gives us the forward-directed consequences of the set V in the
context of M. All sentences ¢ which are entailed by (M, V)[V] are forward-
directed consequences of V U M. The causal model (M, V), by contrast,
entails all consequences of M U V without any discrimination between for-
ward and backward-directed causal reasoning. Entailment has been de-
fined along the lines of classical logic in the above section.

LCounterfactual interventions may nonetheless be defined using the present framework.
See Andreas and Giinther (2025b), which is based on Appendix A.
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1.4 Natural Deduction

We have now seen how interventions enable us to consider the direction of
determination in structural equations. This is the key result: once we have
intervened with the set V of literals on a causal model (M, V), the semantics
of classical logic gives us the forward-directed consequences of this model.
Forward-directed means that the direction of reasoning is aligned with the
direction of causation: it goes from causes to effects.

These considerations apply to deductive reasoning with structural equa-
tions as well: once we have intervened with the set V of literals on a causal
model (M, V), we can use the classical inference rules in order to draw
forward-directed conclusions from this model. Such conclusions are sen-
tences about events and absences which are effects of causes asserted by
V.

Suppose (M, V) is a causal model which is uninformative on the candidate
cause C and its presumed effect E. We are interested which conclusions we
can infer—by means of deductive reasoning—from (M, V) after an inter-
vention by V and C. Now, it is surprisingly simple to define a deductive
system for forward-directed inferences from a causal model (M, V)[V][C].
The following rules of natural deduction suffice for deductive reasoning
with structural equations:

(1) The inference rules for the Boolean connectives A, V, and —.

(2) Two inference rules for the equality symbol =.

The latter rules are as follows:

A=¢ ¢ A=¢ ¢
A -A '

These two inference rules are analogous to Modus Ponens in classical logic.
From A = ¢ and ¢, we can infer A. From A = ¢ and —¢, we can infer —A.
For causal models of the form (M, V)[V], these inference rules may be used
without further restrictions. The intervention by V ensures that we derive
only causally forward-directed inferences from the set V of premises. Like-
wise for causal models (M, V) [V][C]. No further inference rules are needed
to capture the forward-directed conclusions from a causal model. If there
is a deduction of ¢ from (M, V), we write (M, V) - ¢.
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One word on the distinction between formal and semiformal deductions
is in order. Mathematical and scientific reasoning is virtually always semi-
formal in that formal equations and symbols are used together with non-
formal elements and intuitions. Some intermediate conclusions are left out.
Certain principles of inference and some premises remain implicit. Only
deductions in a formal logical system are purely formal and syntactic. Even
the metatheory of a logical system is almost always studied in a semiformal
fashion.

For causal models we have both options. First, we can use the system of in-
ference rules outlined here in order to draw inferences from a causal model
(M, V)[V]. This way, we obtain fully formal deductions. Second, we can
draw inferences in a semiformal fashion, which implies that some inferen-
tial steps may be left out. Semiformal deductions are rarely purely syn-
tactic. When we say, for example, that A, B and the equation E = A A B
determine E to be true, a semantic understanding of this inference is in the
background. Truth is not a syntactic concept.

For our analysis to work, we need to make only those inferential steps ex-
plicit which conclude with a literal. The deduction of the effect from the
genuine cause is easy to recognize—without considering the details of a
fully formalized deduction—in all causal scenarios studied in this book.
But it will be important to distinguish between relations of semantic en-
tailment and deductions from a causal model. A deduction makes at least
some inferential steps explicit, while an entailment relation does not. Cer-
tain subtle properties of genuine causes will become transparent only when
we study the inferential pathways from the candidate cause to the effect. It
does seem to matter how we can infer the effect from a candidate cause.
Mere entailment is insufficient, as will be argued in greater detail in Sec-
tion 4 and 5.

We develop further details of this logic of causal models in Appendix A.
In this section, we have confined ourselves to those concepts which are
essential for our analysis of causation to follow. Key results obtained in the
appendix remain important and valid for the simplified account, though.
This applies, in particular, to theorems about soundness and completeness
for the deductive system just expounded. The following theorem holds.

Theorem 1. Let ¢ be a Boolean propositional formula. There is a deduction
of ¢ from (M, V) iff ¢ is entailed by (M, V). In symbols, (M, V) + ¢ iff
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(M, V) |= ¢.

Notice that (M, V) may be obtained from a causal model by an interven-
tion with V such that the direction of causation is considered. The proof is
obvious from corresponding theorems in Appendix A.

2 Causal Graphs

Any causal model (M, V) gives rise to a single causal graph. Such a graph
tells us which variables are connected to which other variables by a relation
of direct causal determination.

A causal graph has the general form of a directed graph. Such a graph is
commonly represented by an ordered pair (N, E) such that N is a set of
nodes and £ a set of directed edges. For a causal graph, the set of nodes
contains all the variables of the respective causal model. The edges stand
for relations of direct causal determination. Let us study a concrete ex-
ample. Recall the preemption scenario from the previous section with its
distinction between a genuine cause C and a backup cause A. Figure 1
represents the neuron diagram of this scenario.

Figure 1: Early preemption

If we have a representation of a causal scenario in terms of a neuron
diagram, the corresponding causal graph can be read off the diagram.
In the preemption scenario, the nodes are obviously given by the set
{A,B,C,D, E}. The edges of the graph are as follows: (A, B), (B,E), (C,D),
(C,B), and (D, E). More intuitively, we can also write ¢ = {A — B,B —
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E,C - D,C — B,D — E}. Here is a diagram of the causal graph for the

preemption scenario:
(—)
N
\ o
(D—C)

Figure 2: Causal graph of early preemption

By now, it should be obvious how we can read the causal graph off the
neuron diagram of a causal scenario. Note that the edges stand for rela-
tions of direct causal determination. C — D, for example, is an edge since
C directly causally determines D. Both activation and inhibition are consid-
ered relations of direct determination. An edge between A and B, however,
does not imply that A is an actual direct cause of B. We need to distinguish
between direct causal determination and direct actual causation, as will be-
come more obvious shortly.

In addition to neuron diagrams, we can read the causal graph off the set
M of structural equations of a given causal model. In general, A — B is
an edge of the causal graph iff there is an equation ¢ in M such that ¢ has
the logical form B = ¢ and A occurs in ¢. To see how this rule is working,
recall the structural equations of the preemption scenario from the previous
section:

D=C
B=AAN-C
E=DVB.

Applying the just explained rule yields the same set of edges as the neuron
diagram does. A — B, for example, is an edge since there is an equation
B = ¢ such that A occurs on the right-hand side of this equation.

Note that the causal graph of a causal model does not depend on the actual
values of the variables. Such values completely drop out of the considera-
tion when it comes to causal graphs. Consequently, the edges of the graph
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do not stand for relations of actual causal determination. In our example,
B is not active, and so does not activate E. It is not a direct cause of E in
the actual causal scenario. We still say that B stands in a relation of direct
causal determination to E since the value of B determines—together with
the value of D—the value of E.

Finally, we need to study a few concepts concerning pathways in a causal
graph. A directed path is a sequence of nodes which are connected by
edges which are aligned. A directed path is thought to begin with the first
element of the sequence and to end with the last. Multiple occurrences of
one and the same node are not allowed. For example, (A, B, E) is a directed
path in the causal graph of our example. We can also write A — B — E for
this path.

An undirected path, by contrast, is a sequence of nodes which are con-
nected by edges which may not be aligned. As with directed paths, no
node must occur more than once in an undirected path. A — B < C, for
example, is an undirected path in the graph of the preemption scenario.
The sequence C — B — E < D < C, by contrast, is neither a directed nor
an undirected path in this graph.

Suppose (A4,..., A) is sequence of nodes which are connected by edges
which are aligned. Such a sequence is called a cycle. It starts from a node
and goes back to it along a sequence of edges which are aligned. A causal
graph is called acyclic iff it does not contain any cycles. All scenarios stud-
ied in this book have causal models whose graph is acyclic. While it may
be controversial whether a given event A can cause itself, we assume that
no causal graph contains an edge of the type A — A.

It is sometimes helpful to think of causal relations in terms of ancestry. Sup-
pose there is a directed path from A to B in the causal graph of M. Then A
is called an ancestor of B. And B is called a descendant of A. The idea is that
ancestors are potential causes of their descendants.

3 Inferential Pathways

The inferential analysis to follow exploits an important graph-theoretic
property of deductions in causal models: deductive reasoning with struc-
tural equations always proceeds in a stepwise fashion along the edges of
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the causal graph of M: we cannot ‘jump’ from one literal to another if there
is no directed edge between the variables of the two literals. Intermediate
conclusions are always needed in this case.

Proposition 1. Suppose (M, V) is uninformative on the literals L4 and Lg.
Further, suppose (M, V U {L4}) - Lg. Then, for any deduction of Lg from
(M,V U{L,}), there is an undirected path (A,Ds,...,Dy, B) (n > 0) of
variables such that, if n > 0, the deduction contains an intermediate con-
clusion for each variable Dy, ..., D,.

Henceforth, L4 stands for a literal of the variable A. Likewise for other
variables. While a deduction always goes along an undirected path, it may
not be aligned with a directed path in the causal graph. If, however, we
intervene with the valuation V and the premise L4, then the deduction of
another literal L always contains an inferential path which is aligned with
a directed path in the causal graph.

Proposition 2. Suppose (M, V) is uninformative on the literals L4 and Lg.
Further, suppose (M, V)[V][La] F Lg. Then, for any deduction of Lp from
(M, V)[V][La], there is a directed path (A, Ds,...,Dy,B) (n > 0) of vari-
ables such that, if n > 0, the deduction contains an intermediate conclusion
for each variable Dy, . .., D;. Such a directed path exists in the causal graph
of MVU {La}

This proposition implies that any deduction of a literal Lz from
(M, V)[V][La] is causally forward-directed: the variable B is then a de-
scendant of the variable A. This does not hold for deductions from
(M,VU{La}). To understand the reason for this difference, recall that an
intervention by V and L4 does not only affect the valuation of the causal
model, but also the set of structural equations (see Section 1). The causal
model (M, V)[V][L4] contains only structural equations of those variables
which do not have occurrences in the literals in V.U {L4 }.

4 The Inferential Analysis

Our inferential analysis aims to reconstruct how a candidate cause brought
about a given effect. The key idea is that each inferential step to a literal
may be interpreted as a section in a causal process which was started by
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the candidate cause. We express this condition by a constraint on the in-
ferential pathways leading from the candidate cause to the effect: any in-
ferential step to a literal, made by a structural equation, must depend on
the assumption of the candidate cause. Inferential paths which satisfy this
condition are called active.

Definition 1. Active Path
Let (M, V) be a causal model, which is uninformative on the literals C and
E. There is an active path leading from C to E in (M, V) iff E can be inferred
from (M, V)[V][C] such that any inferential step to a literal—by a structural
equation—depends on C.

This notion of active path is defined in terms of relations of inferential de-
pendence among literals. Such relations we claim tell us whether or not
a candidate cause is genuine. What does it mean that an inferred literal
depends on another?

A literal E inferentially depends on a literal C in a given deduction iff C
is used, directly or indirectly, to infer E. In this sense, C may be needed
to infer E in a specific deduction. Suppose we have inferred E from the
set (M, V)[V][C] in a stepwise fashion such that the inferential steps which
rely on a structural equation are made explicit. This gives us a deduction
of E from (M, V)[V][C], which may be carried out in a formal system or
in a semiformal fashion. In any case, it is instructive to consider the two
inference rules for structural equations:

A=¢ ¢ A=¢ ¢
A -A '
For causal models (M, V)[V], these rules of inference may be used with-
out further restrictions. The intervention by V ensures that we derive only
causally forward-directed inferences from the set V of premises.

To infer a literal A using the equation A = ¢, ¢ must be a literal in VU {C}
or it must be inferred from V U {C} using other equations in M. Likewise,
to infer a literal —A using the equation A = ¢, =¢ must be a literal in
V U {C} or it must be inferred from this set. The two cases are completely
analogous, which is why we only need to consider one.

Since, by assumption, C is needed for the deduction of E, there is at least
one inferential step in this deduction in which C is used as a premise di-
rectly. We may, for example, infer a Boolean formula from C, suchas C vV A
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or C A\ A. The latter inference depends, of course, also on A being given.
Or we may infer another literal B from C, provided M contains an equation
B = C. All these inferences depend on the literal C. The key condition of
our definition of active path is satisfied for all these inferences.

Suppose now that the equation A = ¢ is used to infer A, while ¢ is not in
the set V U {C}. Then ¢ must be inferred from V U {C}, possibly using the
equations in M. Put differently, ¢ is an intermediate conclusion on the way
to the final conclusion E. It is intermediate between V U {C} and E. We
arrive at the intermediate conclusion ¢ by way of one or more inferential
pathways, all of which start from V U {C}. Note that these pathways go
along the directed edges which connect the literals in V' U {C} with E in the
causal graph of M. The crucial point is that at least one of the pathways
must have an occurrence of C as a formula. If this condition is satisfied for
all inferential steps to a literal, then we say there exists an active path from
C to E. Otherwise, no such path exists.

It may be interesting to see how we can define the relation of dependence
between two literals in terms of natural deduction. Suppose we use a tree
representation of natural deduction. Then every conclusion—be it inter-
mediate or final—has one or more branches. Each branch corresponds to
a sequence of formulas. At the top of each branch, we have a premise or
an assumption of a subproof. Suppose ¢ is inferred in a natural deduc-
tion proof of E from (M, V)[V][C] in order to infer A using the structural
equation A = ¢. Then we say that the inference of A depends on all liter-
als which occur as formula in at least one branch of ¢. The system of the
branches of ¢ makes up the derivation of ¢.2

One more clarification is needed concerning the relation of dependence
among literals. We have explained what it means that a literal depends
on another with respect to a given deduction of the effect from the candi-
date cause. Such a deduction must satisfy an important constraint, which
has been tacitly assumed so far: it must not contain redundant inferen-
tial steps. The inferential pathways must not contain sections which may
be eliminated without thereby affecting the correctness of other inferential
steps. In other words, the deduction of the final conclusion E must not con-
tain sections which may be eliminated in such a manner that the remaining

2For an exposition of classical logic using the tree representation of natural deduction,
see, e.g., Zach (2021).
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derivation is a correct deduction of E. A non-redundant deduction thus
must satisfy a certain minimality constraint.

To give a simple example of a redundant deduction, suppose we infer E
from A using the equation E = A. Obviously, E depends on A then. Now,
suppose A and B are literals in V U {C}. From A and B we could then infer
the conjunction A A B, from which we could infer A again. Then we infer E
using the equation E = A. There then is an inferential pathway leading to
the inferential step to E on which B occurs. From this, however, we should
not infer that E depends on B since the inferential steps to A A B and back to
A are redundant. They can be eliminated without affecting the correctness
of the inferential step to E.

When we say that a literal E depends on another literal A, then this means
that A isneeded to infer E in a given deduction. In practice, it is not difficult
at all to work out a non-redundant deduction. For virtually all scenarios
to be discussed in the following chapters, there is an agnostic model with
an obvious deduction of the effect from the candidate cause such that this
deduction is not redundant. This holds for both presumably genuine and
non-genuine causes.

It is finally worth noting that there are two principal ways how a literal may
be inferred by a structural equation. First, directly from a structural equa-
tion A = ¢, and ¢ or —¢. Second, indirectly by a subproof in which a struc-
tural equation is used to infer a literal directly. Since causally meaningful
deductions with subproofs rely on direct deductions with structural equa-
tions, inferential dependence concerning subproofs may be understood on
the basis of inferential dependence in direct deductions. This will become
obvious in the discussion of causal scenarios to follow.

Such is the relation of inferential dependence between two literals, which
underlies our notion of active path. We are now in a position to set forth
our core analysis. In the first part, we define an epochetic conditional:

Definition2. (M,V) =C > E
Let (M, V) be a causal model. (M, V) = C > E iff there are V/ C V and
M’ C M such that

(1) (M', V') is uninformative on C and E.

(2) There is an active path from C to E in (M’, V’).
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(3) All the structural equations of C’s descendants are in M.

The second part says that C is a genuine cause of E iff C and E are actual,
and there is an active path from C to E in an agnostic causal model which
contains the structural equations of all descendants of C. In more formal
terms:

Definition 3. Cause
Let (M, V) be a causal model such that V |= M. C is a cause of E relative to
(M, V) iff

(C1) (M,V) =CAE,and
(C2) (M,V) =EC>E.

In essence, our analysis says that there is an active path from a genuine
cause to its effect in an agnostic model. Such an agnostic model must
contain the structural equations of the descendants of the candidate cause.
Pseudo causes don’t have an active path to the effect in an agnostic model
with this property. Some pseudo causes don’t have an active path at all,
some have an active path in an agnostic model which lacks a structural
equation of the candidate cause.

The constraint on agnostic models is motivated by results about infer-
ential pathways from the previous section: for any deduction of E from
(M, V")[V'][C], there is a directed path from C to E in the respective causal
graph. By requiring that M’ contains the structural equations of all de-
scendants of C, we ensure that all forward-directed inferential connections
between the candidate cause and its effect are preserved when we suspend
judgement on C and E.

The condition that (M’, V') is uninformative on C and E may be under-
stood in terms of deductions or entailment. We can say, for example, that
(M’, V') is uninformative on C iff there is no deduction of C or —C from
(M',V"). Likewise for E. Thanks to soundness and completeness of our de-
ductive system for structural equations, it does not matter which way we
understand the notion of an agnostic model. The notion of active path, by
contrast, does not seem to have an obvious semantic counterpart in terms
of entailment. Inferences proceed in a stepwise fashion, semantic valua-
tions do not.
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The present analysis captures a large range of causal scenarios. Only one re-
finement will be needed before we can state our final analysis of the notion
of cause. It is the infamous problem of isomorphic causal models which
will make a refinement of the analysis necessary later on.

It is striking that, so far, our analysis merely explains what it is for a causal
model (M, V)[V] to have an active path from C to E. The active path itself
remains unspecified. Our analysis is, in principle, applicable without any
further explanation of what an active path is. However, it will be easier
to grasp if furnished with a more direct explanation of the notion of ac-
tive path. Such an explanation will also ease the discrimination between
genuine and non-genuine causes. We will work it out in the next section.

5 Inferential Networks

To get a better grip on active paths, we introduce the concept of inferen-
tial network between two literals in a deduction. This concept is to make
dependence relations among literals explicit whenever we can infer E from
(M, V)[V][C]. An inferential network is a graph (£, D ), the nodes of which
are literals. More specifically, £ contains each occurrence of a literal in a
given deduction whenever this literal is inferred. If one and the same literal
is inferred more than once, we need to distinguish all of these occurrences.
In addition, £ is defined by the condition that C is a member of it. The
inferential network (£, D ) rarely coincides with the causal graph of M.

The edges in D are defined as follows. A directed edge A — B is in D iff
E directly depends on A. To give a simple example, if E is inferred from
A using the equation E = A, then E directly depends on A. Moreover, if
E is inferred from A and B using the structural equation E = A A B, then
E directly depends on A and B. If, however, we infer E from E = AV B,
E might not depend on A at all. For example, if AV B has been inferred
from B, then the inferential step to E may well be independent of A. This is
why we say that a literal E depends on another literal if the latter occurs as
a formula—rather than as a mere subformula—on the inferential pathways
to the conclusion E.

In more general terms, E directly depends on a literal A iff there is no in-
termediate conclusion of a literal L on the inferential pathway from A to
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E. Again, a bit of natural deduction is needed to make this idea fully pre-
cise. Suppose E is inferred by a structural equation E = ¢. And the literal
A occurs—as a formula—in a branch which makes up the derivation of
E. We say that E directly depends on A iff the section of the branch from
A to E has no occurrences of any other literal as a formula. This condi-
tion amounts to there being no intermediate conclusion in the form of a
literal between an occurrence of A and an occurrence of B as formulas in
the branch. Recall that one and the same literal may occur more than once
in a deduction.

The careful reader may have noticed that we leave out premises in V and
assumptions of subproofs from the representation of dependences among
literals. Why so? The simple answer to this question is that these depen-
dences are not needed in order to discriminate between genuine and non-
genuine causes. The discrimination becomes even easier when we leave
out said premises. And the active path of a genuine cause can be read off
the inferential network directly. This will be shown shortly.

Let us now study the inferential networks of some concrete scenarios. The
networks of genuine causes are almost always quite simple. Take the pre-
emption scenario and the agnostic model (M,?): C — D — E is an infer-
ential network from C to E for the genuine cause in this model. This is easy
to verify with the neuron diagram of the preemption scenario considered:

Figure 1: Early Preemption

The inferential network for the preempted cause is more interesting. To
infer the effect from the preempted cause in the causal model (M, D), rea-
soning by cases is needed. We need to distinguish two cases: first, C is true,
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and, second, C is not true. If C is true, we can infer E via D. If C is not true,
we can infer B from A and —~C, which gives us E. Thus we have shown that
E must be true no matter which assumption we make about C, provided
A is true. The inferential network of this deduction may be represented as
follows:

A—B—E —E« E"+ D.

The literal E has three different occurrences in this network since it is in-
ferred three times. First, E is inferred in the two subproofs, respectively.
Then as the final conclusion of the deduction. Clearly, this inferential net-
work is not an active path since it violates the crucial condition that all
inferred literals depend on the candidate cause A. Both D and E” violate
this condition.

A remarkable property of our analysis is that we can now distinguish be-
tween preempted and genuine causes even in the absence of intermediate
events—intermediate between the candidate cause and the effect. Take the
following structural equation:

E=CV(AA-C).

Suppose C and E are actual. The structural equation alone may or may
not convince us that C is a genuine cause, while A is not. We will get
to know a concrete scenario which we think should convince us of these
judgements in the next chapter. Clearly, the only agnostic model which
preserves the structural equations of C’s descendants is (M, @). Obviously,
C has a straightforward active path: C — E.

The preempted cause A, by contrast, does not have such a path. Again,
the deduction of the effect for the preempted cause is more complex since
reasoning by cases is needed. First, we assume C from which we can infer
E. If we assume —C, we can infer from this and A that E. Hence, whatever
assumption we make about C, E must be true. The inferential network of
this deduction is as follows:

A—E — E+ E".

We have different occurrences of E since this literal is inferred several times
in the deduction. Clearly, this network does not contain an active path
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since E” is not on a directed path from A to the final conclusion E. For all
we know, our analysis is the first to discriminate between genuine and pre-
empted causes without intermediate events. No other analysis of causation
in terms of causal models has accomplished this so far.

An inferential network lets us recognize certain structural properties of a
given deduction concerning the inferential dependences among literals.
Such a network does not give us a complete deduction. Subproofs, for
example, are not marked as such. Explicit premises other than that of the
candidate cause are left out. Likewise assumptions of subproofs. An infer-
ential network may be seen as the skeleton of a complete deduction.

Notice that both the inferential network (£, D) of a deduction and the
causal graph of M are directed graphs in the sense of graph theory. De-
spite some similarities, they hardly coincide with one another. They differ
for a number of reasons. First, the inferential network may have several oc-
currences of one and the same literal. Second, the network disregards the
literals in V' for simplicity (even though these literals may be used in the
deduction of E). Third, the nodes of the causal graph of M are variables,
while the nodes of an inferential network are literals. Only for very simple
causal scenarios, the two graphs may be seen to coincide when we ignore
the distinction between variables and positive literals. A case in point is the
causal model with the single structural equation E = C.

The crucial property of inferential networks, as defined here, is that they
give us complete information about all relations of dependence among all
literals inferred on the way to the conclusion of the effect E as well as rela-
tions of dependence concerning the candidate cause C. In view of this, we
can now give a direct explanation of the notion of active path.

Explanation 1. Active Path as Inferential Network

Let (L£,D) be the inferential network for a deduction of E from
(M, V)[V][C]. This inferential network is an active path from C to E iff all
nodes of this network are on a directed path from C to E in this network.

Moreover, we can give an alternative explanation of when there is an active
path from a candidate cause to the effect.

Definition 4. Active Path
Let (M, V) be a causal model, which is uninformative on the literals C and
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E. There is an active path leading from C to E in (M, V) iff there is a de-
duction of E from (M, V)[V][C] such that the inferential network of this
deduction has the property that all nodes are on a directed path from C to
E.

This definition is intended to be equivalent to the definition of active path
in the previous section. In fact, we can prove the following proposition.

Proposition 3. Let (M, V) be a causal model which is uninformative on the
literals C and E. There is a deduction of E from (M, V)[V][C] such that the
inferential network of this deduction has the property that all nodes are on
a directed path from C to E iff E can be inferred from (M, V)[V][C] such
that any inferential step to a literal depends on C.

To understand why the equivalence holds, it is helpful to realize that (i)
inferential networks give us complete information about direct and non-
direct dependences among the inferred literals, including dependences
with respect to C. Suppose a network contains the directed path B — D —
E. This tells us that E directly depends on D, which in turn directly de-
pends on B. Moreover, the path indicates that E depends on B, albeit not
directly. It holds in general that (ii) if there is a directed path from literal
C to literal D—in a network of a deduction from (M, ®)[V][C]—then we
know that D inferentially depends on C. Finally, (iii) if literal D inferen-
tially depends on literal C, then there is a directed path from C to D in the
network of the corresponding deduction. With these observations at hand,
the proof is relatively straightforward (see Appendix C for details).

Clearly, if the inferential network has the form of a sequence, then this se-
quence is always an active path. To be more precise about this connection:

Proposition 4. Let (£, D) be the inferential network of a deduction of E
from (M, V)[V][C]. If this network has the form of a sequence C — ... —
E, then this sequence is an active path.

The proof of this proposition is obvious from Explanation 1. We can even
state a stronger proposition: whenever the inferential network of a deduc-
tion of E from (M, V)[V][C] has the form of a sequence, then this sequence
is an active path.

These observations greatly ease the application of our analysis to concrete
scenarios. First, we look for a causal model which is uninformative on
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C and E. Then we see if we can infer E from C such that the inferential
network of this inference is a sequence from C to E. This, in a nutshell,
is how our epochetic analysis will be used when it comes to recognizing
genuine causes in Part I.

Speaking of an active path suggests, if not implies, that such a path has
always the form of a sequence. A directed path in a graph is always a
sequence of nodes. Does an active path, as defined here, always have this
specific form? This is in fact the case for all genuine causes in all scenarios
which are widely discussed in the literature. In the following chapters,
we will not encounter a single scenario where the active path of a genuine
cause has a structure other than a sequence of literals. However, there are
counterexamples to the conjecture that an active path always has the form
of a sequence.

Suppose two events A and B have a common cause C. Further, A and B are
conjunctive causes of a common effect E. This scenario is represented by
the following structural equations:

A=C
B=C
E=AANB.

Obviously, (M, ®) is a causal model which is uninformative on C and E.
There is an obvious deduction of E from (M, @)[C]. Its inferential network
is as follows:

C—-A—E+B<+C.

Clearly, this inferential network is an active path in the sense of Explanation
1. All nodes are on a directed path from the candidate cause to the effect.
This network, however, does not have the form of a sequence. The example
tells us that not all active paths have the form of a sequence. At the same
time, notice that the graph C =+ A — E <= B <— C equals the set-theoretic
union of the graph C —+ A — E with the graph C — B — E. Figuratively
speaking, our network C — A — E < B < C is a bundle of paths, all of
which have the form C — ... — E.

More generally, it is easy to show that any inferential network which is
an active path has the form of a sequence C — ... — E or equals the
union of such sequences. Hence, we can say that some active paths have a
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more complex structure, which contains several subpaths from C to E. Of
course, we are stretching the meaning of the word path a bit when we call
C —+ A — E < B <= C an active path. Strictly speaking, this network is not
a path in the sense of graph theory. The benefit of our terminology is overall
simplicity and accessibility. All active paths in causal scenarios which have
been widely discussed in the literature have the form of a sequence. This
will be shown in the following chapters.

We have thus pinned down our analysis of causation to a relatively simple
criterion concerning inferential networks: all nodes of such a network need
to be on a directed path between the candidate cause and the effect. Ap-
plying our analysis therefore becomes straightforward as soon as we have
the inferential networks laid out. A network tells us in which ways we can
infer the effect from the candidate cause in an agnostic model.

In principle, we have to consider the networks of several deductions for a
given candidate cause. Moreover, several agnostic models may have to be
considered. In practice, however, there is often an obvious agnostic model
and an obvious deduction of the effect from the candidate cause. They
are obvious from the causal graph of the respective scenario. This will be
shown with reference to a larger number of causal scenarios in the chapters
to follow. Variations of what will strike us an obvious deduction either
do not change the inferential network or lead to a redundant deduction.
The latter type of deduction must not be considered for the recognition of
genuine causes, for reasons explained in the above section.

The essence of our epochetic analysis in Part I is thus as follows. First, we
look for a causal model which is uninformative on C and E. Then we see
if we can infer E from C such that the inferential network of this deduction
is an active path. If it is, the candidate cause is genuine. If it is not, we
have to find another agnostic model for which there is a deduction with the
desired property. If we do not find such a deduction, we have to try harder
or show that there is none. We will say more about the latter problem in
the following chapter.



Chapter 3

Classics

We have proposed an analysis of causation in the previous chapter. In the
chapters to come, we test our analysis against our causal judgments and
show that it agrees with the commonsensical judgments about a very wide
range of causal scenarios. In this chapter, we begin with classic causal sce-
narios known as conjunctive causes, overdetermination, early and late pre-
emption, trumping, prevention, and double prevention. We show that our
core analysis delivers the desired judgments for these scenarios.

Causal scenarios have received much attention in the literature and for a
good reason. They are an important criterion for assessing analyses of cau-
sation. An analysis is prima facie better if its verdicts agree with our judg-
ments on a wider range of causal scenarios. ‘Our’ judgments are here the
judgments of common sense. For quite a wide range of causal scenarios,
the commonsensical judgments have been made explicit in the textbook-
like guide to causation by Paul and Hall (2013). Throughout we take it that
they provide an accurate account of our commonsensical judgments.

1 Neuron Diagrams

We follow Paul and Hall (2013, p. 10) in laying out the structure of causal
scenarios by neuron diagrams. ‘Neuron diagrams earn their keep’, they
write, ‘by representing a complex situation clearly and forcefully, allow-
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ing the reader to take in at a glance its central causal characteristics.”! We
introduce now simple neuron diagrams before we apply our analysis to the
causal scenarios.

A neuron diagram is a graph-like representation that comes with different
types of arrows and different types of nodes. Any node stands for a neuron,
which fires or else does not. The firing of a neuron is visualized by a gray-
shaded node, the non-firing by a white node. For the scenarios to be con-
sidered, we need two types of arrows. Each arrow with a head represents
a stimulatory connection between two neurons, each arrow ending with a
black dot an inhibitory connection. Furthermore, we distinguish between
normal neurons that become excited if stimulated by another and stubborn
neurons whose excitation requires two stimulations. Normal neurons are
visualized by circles, stubborn neurons by thicker circles. The neuron dia-
grams to follow obey four rules. First, the temporal order of events is left
to right. Second, a normal neuron will fire if it is stimulated by at least one
and inhibited by none. Third, a stubborn neuron will fire if it is stimulated
by at least two and inhibited by none. Fourth, a neuron will not fire if it is
inhibited by at least one.

Typically, neuron diagrams are used to represent events and absences. The
tiring of a neuron indicates the occurrence of some event and the non-firing
indicates its non-occurrence. Recall that we analyse causation between
events relative to a causal model (M, V), where the causal model repre-
sents the causal scenario under consideration. We thus need a correspon-
dence between neuron diagrams and causal models.

Here is a recipe to translate an arbitrary neuron diagram, as detailed above,
into a causal model. Given a neuron diagram, the corresponding causal
model can be constructed in a stepwise fashion. For each neuron n of the
neuron diagram,

(i) assign n a propositional variable A.
(ii) If n fires, add the positive literal A to the set V of literals.

(iii) If n does not fire, add the negative literal = A to V.

LThis being quoted, there are some shortcomings of neuron diagrams. For details, see
Hitchcock (2007).
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(iv) If n has an incoming arrow, write on the right-hand side of A’s struc-
tural equation a propositional formula ¢ such that ¢ is true iff n fires.

The catch-all condition (iv) stands for the set of the following clauses. (iv’)
For each stimulatory arrow ending in a normal neuron 7, add disjunctively
to the right side of A’s structural equation the variable that corresponds to
the neuron where the arrow originates. (iv”") For each pair of stimulatory
arrows ending in a stubborn neuron 7, add disjunctively to the right side
of A’s structural equation the conjunction of the two variables that corre-
spond to the two neurons where the arrows originate. (vi”’) For each in-
hibitory arrow ending in n, add conjunctively to the right side of A’s struc-
tural equation the negation of the variable that corresponds to the neuron
where the arrow originates.

One can thus read off a neuron diagram its corresponding causal model: if
a neuron is shaded gray, A is in the set V of literals of the corresponding
causal model; if a neuron is white, = A is in V. And the pattern of arrows
translates into a set of structural equations. The translation scheme shows
that there is a principled transition from simple neuron diagrams to our
causal models.

We add a feature to neuron diagrams in order to represent a removal of
information: dotted nodes. Dotted nodes represent neurons about which
there is no information as to whether or not they fire. A neuron is dotted
iff V' contains no information as to whether or not the neuron fires. If, for
example, A € V and ~A ¢ V, the corresponding neuron will be dotted.

The classical causal scenarios like many others can be represented by a neu-
ron diagram. But this is not true of all causal scenarios. The latter class of
scenarios we will represent by dependency diagrams, which are similar
to neuron diagrams but more general. We explain dependency diagrams
when we need them in Section 7 of Chapter 3.

2 Conjunctive Causes

Let’s recall our analysis from Chapter 2: C is a cause of E relative to a causal
model (M, V) iff C and E are actual in it, there is an active path from C
to E in a causal model (M’, V') uninformative on both, and the structural
equations of C’s descendants are in M. Candidate cause and putative effect
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will all be actual in the scenarios to come. To check for causation thus boils
down to answering two questions:

(a) Is there a causal model uninformative on C and E such that all struc-
tural equations of C’s descendants are in M'?

(b) If so, can we in a forward-directed way infer E from C in the uninfor-
mative model of (a) such that the inferential network of this deduc-
tion is an active path?

C is a cause of E iff both questions are answered by yes. In the following
sections, we show how our analysis deals with classic causal scenarios.

In a scenario of conjunctive causes, an effect occurs only if more than one
cause obtains. Let’s say a tree fell only because its roots were weak and
the wind blew. The following neuron diagram depicts such a scenario, in
which two causes—the tree’s having weak roots and the wind blowing—
are necessary for an effect to occur—the tree’s falling.

Figure 3: Conjunctive causes

The neurons C and A fire. Together they bring the stubborn neuron E to
tire. Stubborn neurons cannot be activated by the firing of a single neuron.
Had one of C and A not fired, E would not have been excited. Hence, the
firing of both neurons is necessary for E’s excitation. Our recipe translates
this neuron diagram into the following causal model (M, V'):

E=CAA
C AE
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The structural equation for E is conjunctive: the occurrence of both events,
C and A, is necessary for E to occur.

Relative to (M, V), C is a cause of E. C and E occur in the original causal
model. Furthermore, there is the following causal model (M, V') which is
uninformative on C and E:

E=CAA

Figure 4: Agnostic model for conjunctive causes

We can infer E from (M, @)[V'][C] rather directly using the equation E =
C A A. The inferential network of this deduction is C — E. This is a se-
quence, and therefore an active path by Proposition 4. The crucial point is
that each inference to a literal—in the deduction of the effect E—depends
directly or indirectly on the candidate cause C. By Proposition 4 we know
that any inferential network which has the form of a sequence is an active
path. The following figure visually displays the active path by a thick ar-
row:

E=CAA
C A

Figure 5: Active path from C to E

We have shown that C is a cause of E. Due to the symmetry of the scenario,
A is a cause of E as well, as common sense has it.
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3 Overdetermination

In a scenario of overdetermination, an effect is overdetermined by more
than one event. An example runs as follows: a prisoner is shot by two
soldiers at the same time, and each of the bullets is fatal without any tem-
poral precedence. Arguably, each of the shots should qualify as a cause of
the death of the prisoner. The following neuron diagram depicts such a
scenario, in which an effect is overdetermined by two causes:

@\

Figure 6: Overdetermination

Neuron C and neuron A fire. The firing of each of C and A alone suffices to
excite neuron E. The common firing of C and A overdetermines E to fire.
Arguably, the firing of C is a cause of E’s excitation, and so is the firing of A.
Our recipe translates this neuron diagram into the following causal model:

E=CVA
C,AE

The scenario of overdetermination differs from the scenario of conjunctive
causes only in the structural equation for E. While the structural equation is
conjunctive in the latter scenario, the equation is disjunctive in the overdeter-
mination scenario. The occurrence of one of the events, C or A, is sufficient
for E to occur.

Relative to (M, V), C is a cause of E. There is the following causal model
(M, V') which is uninformative on C and E:
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E=CVA

V

Figure 7: Agnostic model for overdetermination

We can infer E from (M, @)[V'][C] such that the inferential network of this
deduction is C — E. This is a sequence, and so an active path by Propo-
sition 4. Obviously, each inference to a literal depends on the candidate
cause C. Here is a visualization of the deduction and the active path:

@\
-

E=CVA

Figure 8: Active path from C to E

We have shown that C is a cause of E. Due to the symmetry of the scenario,
A is also a cause of E, as it should be.

4 Early Preemption

In a preemption scenario, an effect E is caused by a genuine cause C. But
even if C had not occurred, E would have been brought about by a backup
event A. As it is, however, C caused E and A did not. An example of
early preemption runs as follows. Suzy (C) and Billy (A) each throw a
rock at a window. Suzy’s rock deflects Billy’s mid-flight so that Billy’s does
not touch the window (=B). Only Suzy’s rock impacts upon the window
(D) and it shatters (E). Had Suzy not thrown, however, Billy’s rock would
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not have been deflected and would have shattered the window. Paul and
Hall (2013, p.75) take the following neuron diagram as canonical for the
structure of early preemption:

Figure 1: Early preemption

C’s firing excites neuron D, which in turn leads to an excitation of neuron
E. At the same time, C’s firing inhibits the excitation of B. Had C not fired,
however, A would have excited B, which in turn would have led to an
excitation of E. The actual cause C preempts the mere would-be cause A.
Our recipe translates this neuron diagram into the following causal model
(M, V):

D=C
B=AAN-C
E=DVB
C,A,D,—B,E

Relative to the model (M, V), Cis a cause of E. There is the following causal
model (M, V') which is uninformative on C and E:

D=C
B=AAN-C
E=DVB
-B

Figure 9: Agnostic model for early preemption
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We can infer E from (M, V')[V'][C] such that the inferential network of this
deduction is C — D — E. This sequence is an active path by Proposition
4. Each inference to a literal depends on the candidate cause C, at least
indirectly. Here is a visualization of the active path:

D=C
E=DVB
C,—B

Figure 10: Active path from C to E

We have shown that C is a cause of E.

It remains to show that A is not a cause of E relative to (M, V). And in-
deed, there is no agnostic model (M’, V') for which there is a deduction
of E from (M', V')[V'][A] such that the inferential network of this deduc-
tion is an active path. The demonstration of this claim is a bit complex,
though. There are six causal models (M’, V') which are uninformative on
the candidate cause A and the effect E, given the constraint that M’ contains
the structural equations of A’s descendants: (M, ®), (M, {—B}), (Mp, D),
(Mp,{—B}), (Mp,{C}), and (Mp, {C,—B}). The latter four causal models
result from suspending judgement concerning the structural equation of D.
Mp is obtained from M by removing this equation.

Let us first consider the causal models (M,{-B}), (Mp,{—B}), and
(Mp, {C,—B}). Notice that intervening by {—B} removes the structural
equation of B. As a result, there is no deduction of E from these causal
models once we have intervened by =B and A. By contrast, intervening
by @ leaves the structural equations of the causal model unaltered. In more
formal terms, it holds that (M, @) [@] = (M, @). Let us therefore move on to
the agnostic model (M, @), and study the deductions of E from this model.

We can infer the effect E from (M, @) [@][A]=(M, D)[A]. Reasoning by cases
is needed for this inference. Recall the deduction from the previous chap-
ter: if we assume —C, we can infer B from A by the structural equation
B = A A —C. And from B we can infer E. If we assume C, we can infer E
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via D. Hence, whatever assumption we make about the value of C, E can
be inferred. The inferential network looks as follows:

A—B—E - E+ E"+D.

This inferential network is not an active path: D and E " do not depend on
the candidate cause A.

Moreover, we can do reasoning by cases with respect to B. If B is true, we
can infer E directly. If B is not true, we can infer C from A and —B by an
indirect proof. From C we can infer E via D. The inferential network is as
follows:

EE—-E+ E'+ D+ C+ A

This inferential network is not an active path: E’ does not depend on the
candidate cause A. Note that assumptions of subproofs are left out of the
inferential network by definition. This is why the literals B and =B have no
occurrences in the network.

Yet another option is to do reasoning by cases with respect to D. The result
is the same. We have two subproofs concluding with E, but the network
of the complete deduction is not an active path. Both subproofs violate
the condition that all inferred literals depend on A. This is particularly
obvious for the inferential step from D to E, which is at the beginning of
the subproof on assumption of D.

Finally, we must wonder if E could be derived by a proof by contradic-
tion in such a manner that the network of this deduction is an active path.
Suppose, for contradiction, that E is false. Since —E is an assumption of a
subproof and not an explicit premise, we can draw backward-directed in-
ferences from —E. Specifically, we can infer =B and —D using the equation
E = BV D. For these inferences, we need another subproof which starts
with BV D. By the equation E = B V D, the disjunction BV D gives us
E, which contradicts —=E. Thus we have inferred —(B V D), from which we
can infer =B and —D by classical reasoning. Before completing this indirect
proof, we can already tell that it does not lead to a deduction which has an
active path. None of the inferential steps depends on the candidate cause.
The assumption of A did not even come into play yet.

It may come as a surprise that this fragment of an indirect proof contains a
backward-directed section: we inferred =B and =D from —E in the context
of M. Notice, for clarification, that a deduction of E from (M, V)[V][C] may
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contain backward-directed sections of reasoning in a subproof. The pres-
ence of such sections in a subproof does not contradict our claim that all
consequences of (M, V)[V][C]| are forward-directed. Likewise for all con-
clusions in the main proof of a deduction.

It remains to consider the possibility of a deduction of E from the agnostic
models (Mp,?)[A] and (Mp, {C}). However, there is no such deduction.
Reasoning by cases with regard to the variable C does not work here be-
cause Mp lacks the structural equation of D. Likewise, reasoning by cases
with regard to D and B fails to work. Finally, it is not possible to derive a
contradiction from the assumption —E in the context of the causal models

(Mp,@)[A] and (Mp, {C})[A].

We have now studied four different deductions of the effect E from the
causal model (M, @)[@][A]. None of these deductions has an active path.
The other agnostic models lack a deduction of E altogether. (M, V)[A] - E
fails to hold for these models. Have we thereby established that the pre-
empted cause A is not genuine on our analysis? There remains one prob-
lem: how can we show that we have not overlooked a deduction which has
the desired property that all inferred literals depend on the candidate cause
A? Perhaps, there is some combination of a direct deduction with an indi-
rect one which satisfies our definition of an active path. In the next section,
we will show that we can dispense with indirect proofs when searching for
a deduction of the effect with an active path. This result enables us to show
in a conclusive manner hat a preempted cause does not count as genuine
on our analysis.

5 Direct Deductions and Genuine Causation

Let us understand the notion of direct deduction as antonym to the notion
of indirect proof. A direct deduction may contain reasoning by cases, but
does not contain any indirect proof. Let us call a deduction strictly direct iff
it contains no subproofs at all. We have seen how an indirect proof works
for causal models. To prove ¢, we assume —¢. Then we derive a contra-
diction from —¢ in the context of the premises and equations of the causal
model. From this contradiction we infer ¢. Indirect proofs are also referred
to as proofs by contradiction.

What is wrong with indirect proofs when trying to show that there is an
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active path from the candidate cause to the effect? In the preemption sce-
nario, all deductions with an indirect proof violate either the condition of
non-redundancy or the condition that all inferred literals depend on the
candidate cause. This problem arises for deductions from both the genuine
and the preempted cause. We can show that indirect proofs, if used in a de-
duction with an active path, are dispensable: if there is a deduction which
has an active path, then there is a direct deduction with an active path.

Proposition 5. Let (M, V) be a causal model which is uninformative on C
and E. Suppose there is a deduction of E from (M, V)[V][C] such that this
deduction has an active path. Then there is such a deduction which is direct
with respect to all causal inferences.

Only indirect proofs with causal inferences are dispensable. Other types of
indirect proofs are not. A case in point is the deduction of =(A A B) from
—A. This deduction, however, does not have a causal meaning. We need
an indirect proof for it only if we work with fully formal deductions. Recall
from the previous chapter that an inference is said to be causal iff it uses a
structural equation directly or indirectly in a subproof.

Proposition 5 helps us simplify the search for a deduction which has an ac-
tive path. We are now in a position to show in a conclusive manner that
a preempted cause is not genuine on our analysis. Let us resume the dis-
cussion of the preemption scenario from the previous section. Recall the
causal models which are uninformative on the preempted cause A and
the effect E: (M, ), (M,{-B}), (Mp,?), (Mp,{—-B}), (Mp,{C}), and
(Mp, {C,—B}). Further, recall that Mp is obtained from M by removing
the structural equation of D.

Suppose the preempted cause A were to count as genuine on our analysis.
By Proposition 5, this implies that there is a direct deduction of E from
(M, V)[V][A] for at least one of the agnostic models. However, there is
no such deduction. For this to be seen, let us first consider the agnostic
models (M, {—B}), (Mp, {—B}), and (Mp, {C,—B}). As explained above,
intervention by —B removes the structural equation of B. Hence, there is no
directed path from A to E in the causal graphs of said causal models after
intervention by —B and A. By Proposition 2, this implies that there is no
deduction of E from any of these causal models.

Likewise, there is no deduction of the effect E from the preempted cause
A for the agnostic models (Mp, {C}) and (Mp, @) in the first place. We
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can show this by a combination of deductive reasoning and semantic con-
siderations. Let us suppose —E,C, and A. From C and A we can infer
—B. From —E we can infer —~D. Thus we obtain a complete valuation
V" = {A,C,—B,—~D,—E}. Notably, this valuation satisfies all structural
equations in Mp and it satisfies C. Hence, it is consistent to assume that
the effect E does not occur for both of the agnostic models (Mp, {C}) and
(Mp,®). Hence, there is no deduction of E from A for these models.

Finally, it remains to consider the agnostic model (M, ). Here we have
a deduction of E from (M, ®)[A]. However, reasoning by cases is needed
for this deduction. At least one subproof contains an inferential step which
does not depend on the candidate cause A. More specifically, for each de-
duction of E using a proof by cases, a subproof is needed whose first in-
ferential step toward E is independent of A. We have seen this problem to
arise for proofs by cases with regard to C, D, and B in the previous section.
By Proposition 5, we can ignore proofs by cases with regard to E since the
subproof which starts with —~E amounts to an indirect proof of E.

Thus we have shown that there is no deduction of E from (M,?)[A]
which has an active path. Since there is no deduction of E from A for the
other agnostic models, this implies that there is no deduction of E from
(M, V')[V'][A] with an active path for any of the agnostic models. The pre-
empted cause A does therefore not count as genuine on our analysis.

6 Late Preemption

Lewis (1986b, p.200) subdivides preemption into early and late. We have
discussed early preemption in the previous sections: a backup process is
cut off before the process started by the preempting cause could bring
about the effect. In scenarios of late preemption, by contrast, the backup
process is cut off only because the genuine cause brings about the effect
before the preempted cause could do so. Lewis (2000, p. 184) provides the
following story for late preemption:

Billy and Suzy throw rocks at a bottle. Suzy throws first, or
maybe she throws harder. Her rock arrives first. The bottle
shatters. When Billy’s rock gets to where the bottle used to be,
there is nothing there but flying shards of glass. Without Suzy’s



CHAPTER 3. CLASSICS 66

throw, the impact of Billy’s rock on the intact bottle would have
been one of the final steps in the causal chain from Billy’s throw
to the shattering of the bottle. But, thanks to Suzy’s preempting
throw, that impact never happens.

Crucially, the backup process initiated by Billy’s throw is cut off only by
Suzy’s rock impacting the bottle. Until her rock impacts the bottle, there is
always a backup process that would bring about the shattering of the bottle
an instant later.

How to best represent late preemption in neuron diagrams and causal mod-
els is somewhat controversial (Hall 2007, Hitchcock 2007, Paul and Hall
2013). We follow Halpern and Pearl (2005, pp. 861-2) who propose a causal
model for late preemption corresponding to the following neuron diagram.

Figure 11: Late preemption

Suzy throws her rock (C) and Billy his (A). Suzy’s rock impacts the bottle
(D), and so the bottle shatters (E). Suzy’s rock impacting the bottle (D)
prevents Billy’s rock from impacting the bottle (—B).

Our recipe translates the neuron diagram of late preemption into the fol-
lowing causal model (M, V):

D=C
B=AA-D
E=DVB
C,A,D,—B,E

Only the equation for B differs from the causal model of early preemption:
the occurrence of B requires A to occur and the absence of D instead of the
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absence of C. This difference seems negligible given that D occurs just in
case C occurs. It is thus unsurprising that our analysis treats late preemp-
tion analogous to early preemption.

Relative to (M, V), C is a cause of E. There is the following causal model
(M, V') which is uninformative on C and E:

D=C
B=AAN-D
E=DVB
-B

—()

Figure 12: Agnostic model for late preemption

We can infer E from (M, ®)[V’][C] such that the inferential network of this
deduction is C — D — E. The network is an active path since all infer-
ences to a literal depend on the candidate cause C. The active path may be
graphically depicted as follows:

D=C
E=DVB
C,—B

Figure 13: Active path from C to E

We have shown that C is a cause of E.

A is not a cause of E relative to (M, V). The reasoning is analogous to the
one of early preemption in the previous section.



CHAPTER 3. CLASSICS 68
7 Trumping Preemption

Our analysis solves preemption without intermediate variables. For this
to be seen, let us consider a scenario known as trumping, which is particu-
larly troublesome for counterfactual theories of causation. Schaffer (2000)
provides an example akin to the following. It is a rule of the military that
commands from higher-ranking officers trump those of lower rank. The
major and the sergeant stand before a soldier, both shout “Advance!” at the
same time, and the soldier advances. It is the major’s command, and not
the sergeant’s, that causes the soldier to advance. The sergeant’s command
has not been effective because it has been trumped by the major’s.

There is some controversy about how to best represent a scenario of trump-
ing. This is clear: the soldier’s advancing is redundantly caused. The sol-
dier would still have advanced if the sergeant had shouted ‘Advance!” and
the major had been silent, or if the major had shouted “Advance!” and the
sergeant had been silent. And the redundant causation is asymmetrical.
The major’s command is causally efficient, while the sergeant’s is not.

Schaffer (2000) suggested to view the scenario of trumping as a case of pre-
emption. This makes perfect sense. Recall that we have characterized pre-
emption through the notion of a backup cause. The preempted cause is
a backup cause in that it would be effective if the genuine cause were to
be absent. Put very briefly, the preempted cause acts if the genuine cause
does not. Since, however, the genuine cause is active by assumption in the
causal scenario, the preempted cause remains a mere backup, which does
not get to act.

Furthermore, we suggest to characterize trumping as a case of simultane-
ous preemption. It is simultaneous in two respects. First, the genuine and
the preempted cause occur at the same time. Second, the genuine cause
is effective at exactly the same time the preempted cause would be if the
genuine cause was not present. Unlike in early preemption, there is no
interference by an intermediate event through which the genuine and the
preempted cause interact. Unlike in late preemption, the reason why the
genuine cause is active is not that it acts faster than the preempted cause.
Simultaneous preemption is different from both early and late preemption
(Lewis 2000).

The formal representation of trumping is controversial. Unlike in scenarios
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of early and late preemption, there are no obvious intermediate events—
intermediate between the two candidate causes and their effect—which
could help us explain why the preempted cause doesn’t get to act. A mini-
malist representation of Schaffer’s trumping scenario without intermediate
variables goes as follows:

©
o ®

Figure 14: Trumping

The major’s command to advance (C) is sufficient for the advancement of
the soldier (E), and so is the command of the sergeant (A) in the absence of
higher-ranking commands. In the scenario under consideration, the major
actually gives the soldier a command to advance, and so does the sergeant.

The structural equation of the trumping scenariois E = C V (A A =C): the
soldier advances just in case the major gives the command to advance, or
the sergeant does and the major does not. Note that the structural equa-
tion contains strictly more information than the graphical representation,
which looks just like a scenario of overdetermination. Indeed, the graph-
ical representation is a dependency diagram. Such a diagram represents
only the dependencies between variables and what events occur. An oc-
curring event is represented by a grey node, an absence by a white node.
Unlike a neuron diagram, a dependency diagram does not allow us to read
off the structural equations of the causal scenario. Directed arrows, in par-
ticular, stand for any type of dependence. A dependency diagram therefore
contains less information than a neuron diagram.

Here is the resulting causal model for the trumping scenario:

E=CV(AA-C)
C, AL

Our analysis delivers the intuitive verdicts for trumping, even without in-
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termediate variables or other extensions. The demonstration is straightfor-
ward. Relative to (M, V), C is a cause of E. There is the following causal
model (M, V') which is uninformative on C and E:

E=CV(AA-C)

Figure 15: Agnostic model for trumping

We can infer E from (M, ®)[?][C] such that the network of this deduction
is C — E. Obviously, each inference to a literal depends on C, and so the
network is an active path. Here is a visualization:

e

E=CV(AA-C)

Figure 16: Active path from C to E

We have shown that C is a cause of E.

It remains to show that A is not a cause of E. There is only one causal
model which keeps the structural equation and is uninformative on A and
E: (M,@). We can infer E from (M, ®)[V'|[A], but the inferential network
of this deduction is not an active path:

A—E — E+ E".

The inferential network stands for a deduction with reasoning by cases. If
C is not actual, E can be inferred by A. If C is actual, E can be inferred
therefrom without A. This means the inferential step does not depend on
A. There is no other direct deduction of E from (M, @) [@][A] which has an
active path. There is also no other direct deduction of E from any causal
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model (@, V')[V'][A] which is uninformative on E. By Proposition 5, we
know that we can ignore indirect deductions of E. We have thus shown
that A is not a cause of E.

We find it quite remarkable that our analysis can discriminate between gen-
uine and preempted causes on the minimalist causal model of trumping.
No intermediate variables are needed. We are not aware of any other causal
model analysis which delivers this result. There is a deeper reason why
analyses of actual causation using the standard account of causal models
have difficulties making the discrimination in question.

Note that the right-hand side of the structural equation E = CV (A A =C)
is logically equivalent to the right-hand side of E = C V A. This implies
that the two equations are indistinguishable if understood in a purely se-
mantic way. Hence, a purely semantic account of structural equations, such
as the one in Halpern (2000) and Halpern and Pearl (2005), is unable to dis-
tinguish between genuine and trumped causes in the trumping scenario of
this section from the outset. To cope with this trumping scenario, accounts
relying on purely semantic structural equations seem to require a hyper-
intensional refinement—a refinement which allows to distinguish between
logical equivalents (Berto and Nolan 2023).

8 Prevention

In a prevention scenario, an event prevents another from occurring. How-
ever, had the event not occurred, the other would not have been prevented,
and so would have occurred. Here is an example. An assassin poisons vic-
tim’s coffee (D). Victim’s bodyguard puts in an antidote (C), which pre-
vents the poison from killing victim (—E). Had bodyguard not put in the
antidote, victim would have died. Paul and Hall (2013, p.174) represent
the basic scenario of prevention by the following neuron diagram:
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Figure 17: Prevention

Neuron C fires and thereby inhibits that neuron E fires. E would have
been excited by D if the inhibitory signal from C had been absent. But
as it is, C prevents E from firing. That is, C causes —E by prevention.
Our recipe translates the neuron diagram of prevention into the following
causal model (M, V):

E=-CAD
C,D,-E

Relative to (M, V), C is a cause of —E. There is the following causal model
(M, V') which is uninformative on C and —E:

E=-CAD

Figure 18: Agnostic model for prevention

We can infer —E from (M, ?)[V'][C] such that the inferential network of
this deduction is an active path: C — —E. Obviously, each inference to a
literal in this network depends on the candidate cause C. We display the
active path by the following figure:



CHAPTER 3. CLASSICS 73

E=-CAD
C, D

Figure 19: Active path from C to E

We have shown that C is a cause of —E.

Finally, D is not a cause of —E relative to (M, V). Note that any causal
model (M, V') which is uninformative on D and —E is also uninformative
on C. Because of condition (3) in the definition of >, we need to retain the
structural equation of E when looking for an uninformative causal model
with an active path from D to —E. Hence, there is no causal model (M’, V')
which is uninformative on D and —E such that —E can be inferred from
(M', V") ][V'][D]. And so there cannot be an uninformative model (M, V')
with an active path from D to —E.

9 Double Prevention

In a scenario of double prevention, an event prevents a threat for another
event’s occurrence. More precisely, an event prevents an event which—
had it occurred—would have prevented a third event. We say an event C
double prevents an event E if C prevents an event that—had it occurred—
would have prevented E. Paul and Hall (2013, p. 175) provide an example:

David makes the coffee (A), and fills his cup (E). Meanwhile,
Steffi scoops up James the cat (C) as he lashes his tail wildly (B);
her quick action prevents a disastrous spilling (D). Most of us
want to say that Steffi saved the coffee—that is, C was among
the causes of E.

They represent the structure of double prevention by the following neuron
diagram:
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Figure 20: Double prevention

The characteristic structure of double prevention is this: C’s firing prevents
D’s tiring, which would have prevented E’s firing. This structure exhibits
a counterfactual dependence: given that B fires, E’s firing counterfactually
depends on C’s firing. If C had not fired, D would fire, and thereby prevent
E from firing. C’s firing prevents a threat for E’s firing, namely the threat
originating from B’s firing. In short, C’s firing double prevents E’s firing.

C is arguably a cause of E in the present scenario of double prevention:
Steffi’s scooping up James the cat prevents the spilling of the coffee, which
would have prevented the filling of the cup. Our recipe translates the neu-
ron diagram of Figure 20 into the following causal model (M, V'):

D=BA-C
E=AAN-D
A,B,C,-D,E

Relative to (M, V), C is a cause of E. There is the following causal model
(M, V") which is uninformative on C and E:
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D =BA-C
E=AAN-D
A, B

Figure 21: Agnostic model for double prevention

We can infer E from (M, ®)[V'][C] such that the inferential network of this
deduction is C — =D — E. This is a sequence, and therefore the network

is an active path. Each inference to a literal depends on the candidate cause
C. Here is a graphical representation:

D =BA-C
E=AN-D
A,B,C

Figure 22: Active path from C to E

We have shown that C is a cause of E.



Chapter 4

Non-Transitivity

In this chapter, we show that our analysis captures our judgments in sce-
narios which suggest that causation is not transitive. In particular, we show
that our analysis captures our judgments in scenarios known as short cir-
cuit, extended double prevention, and some switching scenarios.

Several scenarios have been put forth which suggest that our causal judg-
ments are not transitive (McDermott 1995, Lewis 2000, Paul 2000). The
transitivity of causation means this: whenever C is a cause of A and A is a
cause of E, then C is a cause of E. It seems often plausible to judge C a cause
of E if you judge C a cause of A and A a cause of E. In light of our analy-
sis, the plausibility is not hard to explain: if there is an active path from C
to A in an uninformative model and there is one from A to E in the same
uninformative model, then there is one from C to E in this uninformative
model. We suggest this is why it is often appropriate to judge that C causes
E by tracing a causal chain from C over other events to E. Our analysis can
explain why transitivity is plausible for causation. And yet it does not rely
on transitivity to handle certain causal scenarios. We are thus free to deny
that our causal judgment is invariably transitive.

The challenge of non-transitivity is to show that certain events are non-
causes—even though they share certain structural properties with genuine
causes. In this respect, the challenge resembles the preemption problem:
a preempted cause does not count as genuine—even though we can infer
from it the effect in an agnostic model. We have solved the latter problem

76



CHAPTER 4. NON-TRANSITIVITY 77

by requiring that each inferential step to an event or absence must depend
on the candidate cause in the inferential reconstruction of a causal process.

Our solution to the challenge of non-transitivity exploits a subtle condition
in our definition of an epochetic conditional for causal models. To show
that C > E holds, it is not enough to find an active path from C to E in
a causal model which is agnostic about C and E. The active path must be
found for an agnostic causal model which contains the structural equations
of all descendants of the candidate cause C. The rational for this condition
is to leave intact the inferential relations between the candidate cause and
its potential effects. We will show that there is no such model for a number
of causal scenarios where our causal judgements are not transitive.

1 Short Circuit

One of the examples against transitivity goes as follows. A boulder is
dislodged and rolls toward a hiker. The hiker sees the boulder coming
and ducks, so that she does not get hit by the boulder. If the hiker had
not ducked, however, the boulder would have hit her (Hitchcock 2001,
cf. p. 276).

The boulder scenario seems to show that there are cases where causation is
not transitive: the dislodged boulder causes the ducking of the hiker, which
in turn causes the hiker to remain unscathed. But it is counterintuitive to
say that the dislodging of the boulder causes the hiker to remain unscathed.
The structure of the boulder scenario can be represented by the following

neuron diagram:

Figure 23: Short circuit

Hall (2007, p. 36) calls the network of Figure 23 a short circuit: the boulder’s
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dislodgement (F) threatens to hit the hiker by a rolling boulder (B), and
at the same time provokes an action—the ducking (D)—that prevents this
threat from being effective (—E).

In neuron speak, F fires and thereby excites neuron B to fire, which in turn
threatens to excite neuron E. At the same time, F’s firing excites neuron
D, whose firing prevents E from firing. So F’s firing creates a process via
B that threatens to bring about E and at the same time initiates another
process via D which prevents the threat from being effective. F cancels its
own threat—the threat via B—to prevent E.

F should not count as a cause of —E because F creates and cancels the threat
to bring about E (Paul and Hall 2013, p.216). Our recipe translates the
neuron diagram of the boulder scenario into the following causal model
(M, V):

g =
Il

F
F
BA-D
D,—-E

/|
|

7 7

Relative to (M, V), F is not a cause of —E. For this to be seen, observe that
all variables are descendants of F, except for F itself. By condition (3) of
the definition of >>, this implies that we cannot suspend judgement on a
structural equation in M. Reasoning by cases furthermore reveals that the
structural equations in M entail =E. We can infer —E from both {F} UM
and {—F} U M, which implies (M,®) = —E. Hence, there is no causal
model (M, V') wich is uninformative on E and which satisfies condition
(3). And so F > —E fails to hold.

By contrast, D is a cause of —E. For this to be seen, observe that D is not a
descendant of itself. Hence, the structural equation D = F can be removed.
There is the following causal model (M’, V') which is uninformative on D
and —E:
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B=F
E=BA-D
F,B

Figure 24: Causal model agnostic on D and E

We can infer —E from (M, V')[V'][D] such that the inferential network of
this deduction is D — —E. This is an active path since each inference to a
literal depends on the candidate cause D. The deduction is displayed by
the following figure:

B=F
E=BA-D
F,B,D

Figure 25: Active path from D to —E

We have shown that D is a cause of —E, as desired.

Relative to (M, V'), B is not a cause of —E. For this to be seen, note that D
is necessary to infer —E, and any causal model uninformative on B and —E
must either be uninformative on D, or else lack the structural equation of E.
In both cases, intervening by B does not bring about —E. And so F > —E
fails to hold.

2 Extended Double Prevention

Hall (2004, p.247) presents an extension of the scenario of double preven-
tion depicted in Figure 20. The extended double prevention scenario fits
the structure of the following neuron diagram:
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Figure 26: Extended double prevention

Figure 26 extends Figure 20 by neuron F, which figures as a common cause
of Band C. The subgraph F — B — C — D is a short circuit. F starts a process
via B that threatens to prevent E. At the same time, F initiates another
process via C that prevents the threat. F cancels its own threat—the threat
via B—to prevent E.

In the scenario of double prevention, explained in Section 9 of the previous
chapter, the threat for E originated independently of its preventer. Here,
by contrast, F creates and cancels the threat to prevent E. This difference is
sufficient for F not to be a cause of E (Paul and Hall 2013, p.216). Observe
that the structure characteristic of double prevention is embedded in Figure
26. The firing of neuron C inhibits D’s firing that, had it fired, would have
inhibited E’s firing. Nevertheless, this scenario of extended double preven-
tion exhibits an important difference to its relative of double prevention:
E does not counterfactually depend on F. If F had not fired, E would still
have fired.

Our recipe translates the neuron diagram of extended double prevention
into the following causal model (M, V):

B=F

C=F
D=BA-C
E=AAN-D
A,F,B,C,—-D,E
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Relative to this causal model, F is not a cause of E. For this to be seen, ob-
serve that the variables B, C, D, and E are descendants of F. So no structural
equation can be removed by condition (3) of the definition of our epochetic
conditional >>. Hence, to show that F > E holds, we need to find an active
path from F to E in an agnostic model (M’, V') such that M’ = M. There is
only one such model which is uninformative on F and E:

Figure 27: Causal model agnostic on F and E

But we cannot infer E from (M, V')[V'][F|. This inference would require
that A € V'. But then (M, V') would not be uninformative on E. We have
shown that F is not a cause of E, as common sense says.

Relative to (M, V), C is a cause of E. There is the following causal model
(M’, V') which is uninformative on C and E and in which the structural
equation C = F has been removed:
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B=F
D=BA-C
E=AAN-D
A,F,B

Figure 28: Causal model agnostic on C and E

We can infer E from (M, V')[V'][C] such that the inferential network of this
deduction is C — =D — E. This is an active path since each inference to
a literal depends on the candidate cause C. Here is a visualization of the
active path:

@00

B=F
D=BA-C
E=AAN-D
A, F,B,C

Figure 29: Active path from C to E

We have shown that C is a cause of E.
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3 Simple Switch

Switching scenarios are paradigmatic for causal scenarios where our causal
judgments are not transitive. In switching scenarios, some event F helps to
determine the causal path by which another event is brought about. Cru-
cially, the other event would also occur via an alternative path if F had
not occurred. Indeed, if the non-actual switch position —F were actual, —=F
would be on this path to E’s occurrence. This is a noteworthy difference to
preemption scenarios. If Suzy were not to throw her rock, her not throwing
would not help to bring about the bottle’s shattering.

To make switches more concrete, consider a story provided by Hall (2000,
p-205). Flipper is standing by a switch in the railroad tracks. A train ap-
proaches in the distance. She flips the switch (F), so that the train travels
down the right track (R), instead of the left (—L). Since the tracks recon-
verge up ahead, the train arrives at its destination all the same (E). The
commonsensical judgment is that flipping the switch is not a cause of the
train’s arrival—even though flipping the switch is a cause of the train’s
travelling on the right track, and the train’s travelling on the right track is
a cause of the train’s arrival (Paul and Hall 2013, p. 232).

We think it is hard to represent switching scenarios by neuron diagrams.
One reason is that the two positions of a switch are assumed to be symmet-
ric, while the firing and the non-firing of a neuron are not. A further reason
is that a firing ‘switch neuron” would activate a neuron and inhibit another.
But this is too much: a switch should only determine the path by which
an event is brought about. Neuron diagrams introduce an asymmetry with
respect to the position of a switch, while there should be none. Hence, we
represent the switching scenario by a simple dependency diagram:
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Figure 30: Simple switch

F acts like a switch as to E. And so F does not count as a cause of E, even
though F should count as a cause of R and R should count as a cause of E.

The simple switch can be represented by the following causal model
(M, V):

L=-F
R=F
E=LVR
F,-L,R,E

Relative to (M, V), F is not a cause of E. For this to be seen, observe that all
variables except F are descendants of the candidate cause F. By condition
(3) in the definition of >, this implies that no structural equation can be
removed when we look for an agnostic model with an active path. Now,
we cannot find an agnostic model with an active path from F to E since
there is simply no agnostic model (M’, V') such that M’ = M. Even the
causal model (M’, @) entails E. For this to be seen, suppose F. (i) From
this assumption we can infer E via the literal R. Likewise, (ii) from the
assumption of =F we can infer E via the literal L. Note that (iii) F V —~F
can be derived from the empty premise set in our logic of causal models.
(i), (ii), and (iii) imply that (M, @) entails E by soundness of the deductive
system. In the absence of a causal model (M, V') which is agnostic on E,
F > E fails to hold.

Relative to (M, V), F is a cause of R. There is, among others, the following
causal model (M’, V') which is uninformative on F and R:
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L=-F
R=F
E=LVR
E

Figure 31: Causal model agnostic on F and R

We can infer R from (M’, V') [V'][F] such that the inferential network of this
deduction is F — R. This is an active path since each inference to a literal
depends on the candidate cause F. The deduction may be visualized by the
following figure:

L=-F
R=F
E=LVR
F,E

Figure 32: Active path from F to R

We have shown that F is a cause of R, as desired.

Relative to (M, V), R is a cause of E. There is, among others, the following
causal model (M’, V') which is uninformative on R and E:
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E=LVR
F,—-L

Figure 33: Causal model agnostic on R and E

We can infer E from (M’, V')[V'][R] such that the inferential network of this
deduction is R — E. This is an active path since each inference to a literal
depends on the candidate cause R. The active path may be visualized by
the following figure:

L=-F
@ E=LVR
F,-L,R

Figure 34: Active path from R to E

We have shown that R is a cause of E, as common sense has it.

4 Basic Switch

The representation of switching scenarios is somewhat controversial. Paul
and Hall (2013, p.232) represent a ‘basic’ switch by the following neuron
diagram:
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Figure 35: Neuron diagram for basic switch

Paul and Hall ‘stipulate’ that neuron F acts like a switch as to neuron E. If
neuron F fires, the signal from neuron B’s firing travels down and excites
neuron R. If F does not fire, the signal from B travels up and excites neuron
L. Either way, neuron E gets excited and fires.

Paul and Hall’s neuron diagram for the basic switch has additional stipu-
lations. As already mentioned, we think it is hard to represent switching
scenarios by neuron diagrams. We think the following dependency dia-
gram is better suited to represent the basic switch:

0.
oo »
()—()

Figure 36: Dependency diagram for basic switch

For Hall (2007, p. 118) writes that the basic switch has ‘the obvious causal
model’ (M, V):
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B=A
L=-FAB
R=FAB
E=LVR
A,F,B,~L,R,E

Relative to (M, V), F is not a cause of E. For this to be seen, observe that the
variables L, R, and E are descendants of F. By condition (3) of the definition
of >, no structural equation except B = A can be removed when looking
for an agnostic model with an active path from F to E. Removing it or not,
(M', V') is uninformative on F and E only if B ¢ V’. But then we cannot
infer E from (M’, V')[V'][F]. And so F > E fails to hold.

We invite the reader to verify that A is a cause of E, Bis a cause of R, Ris a
cause of E, and B is a cause of E—as desired in the basic switch.}

5 Realistic Switch

Some authors are dissatisfied with modelling switches by a simple switch,
which has been discussed above in this chapter. They believe that any real-
world event has at least two causal factors (e.g. Hitchcock (2009, p.396)).
In the train example, for instance, the train can only pass on the right track
because everything is normal: nothing blocks the track, it is in good con-
dition, and so on. The simple switch in Figure 30 does not consider such
conditions and is therefore considered inappropriate. The following de-
pendency diagram depicts a realistic switch:

1Paul and Hall (2013, p. 235) present a modification of their basic switch, where the equa-
tion for E is replaced by E = R. For the modified scenario, our analysis says that F is a cause
of E, as desired. The demonstration is straightforward.
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Figure 37: Realistic switch

Flipping the switch (F) and the right tracks being in good working condi-
tion (H) bring about the train’s travelling on the right tracks (R). And the
train’s travelling on the right tracks brings about the train’s arrival at its
destination (E). At the same time, flipping the switch (F) prevents the train
from travelling on the left tracks (—L). However, had the switch not been
flipped (—F), the train would have travelled on the left tracks (L) as the left
tracks are also in good working condition (G). And the train’s travelling on
the left tracks (L) would have brought about the train’s arrival (E) all the
same. In the actual circumstances, the flipping of the switch determines
whether the train travels on the left or right tracks, and so acts like a switch
as to the train’s arrival. Here is the causal model (M, V) of the realistic
switch:

L=GA-F
R=FANH
E=LVR
G,F,H,—-L,R,E

There are several causal models (M, V') uninformative on F and E. Some
of these have an active path from F to E. Take the model (M, V') for which
V' = {H}. In this model we can infer E from F such that the inferential
network is F — R — E. This is an active path, and so condition (C2) is
satisfied.
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Our analysis counts the position of a realistic switch as a cause of the train’s
arrival, which goes against our causal judgements. This observation calls
for a refinement of our analysis. In the next section, we explain a poten-
tial solution to the problem of realistic switches. This solution, however,
reveals another problem: how to delineate between realistic switches and
preemption? Our account of deviancy to be developed in Chapter 6 will
provide a solution to both problems.

6 Sartorio’s Principle

The problem of realistic switches may be solved by adopting the following
principle: if an event is a cause of E, then its absence would not be a cause of
E in a scenario which otherwise equals the one under consideration. Like-
wise for absences which are genuine causes. The principle translates to the
following refinement of our analysis: C is a cause of E relative to (M, V) iff

(C1) (M, V) ECAE,
(C2) (M,V) =C>E,and
(C3) (M, V) = -C > E.

Condition (C3) is inspired by Sartorio (2005, p.90): ‘events and their ab-
sences would not have caused the same effects’. To be precise, the con-
junction of (C2) and (C3) makes the principle explicit that, if an event is a
cause of an effect, then its absence would not be a cause of this effect. While
the conditional —~C >> E may be called a counterfactual, it’s nonetheless dif-
ferent from the type of counterfactual conditional used in counterfactual
approaches to causation.

The above analysis has no problems with realistic switches, given the po-
sition of the switch should not count as a cause of the train’s arrival. The
crucial point is that condition (C3) is violated for the causal claim in ques-
tion. For the causal model of the realistic switch, explained in the previous
section, there is an agnostic model which has an active path from the nega-
tion of the candidate cause to the effect in question. Take the model (M, V'),
where V' = {G}. In this model we can infer E from —F such that the in-
ferential network is -F — L — E. This is an active path. Hence, —=F > E,
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which means that condition (C3) is violated. F does not count as a genuine
cause on the present analysis, as it should be.

Unfortunately, condition (C3) leads to a new problem, which concerns the
distinction between switches and scenarios of preemption. For this to be
seen, let’s revisit the simple scenario of early preemption:

Figure 1: Early preemption

It’s easy to show that condition (C3) is satisfied for the causal claim that C
is a cause of E. There is simply no agnostic model (M’, V') in which E can
be inferred from —C such that M’ contains the equations of all descendants
of C. Hence, there is no active path from —C to E. However, things are
different when we replace the directed edge from C to D by an internal
conjunctive scenario in which C and C’ are needed to activate D:

()

D=CAC
B=AN-C
E=DVB

@ ®
N C.C,4,D, B E
@>/@

Figure 38: Extended early preemption
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Note that it still makes perfect sense to call C a cause of E. The activation of
neuron C contributes to the activation of D, which in turn activates E. The
path from A to E, by contrast, is not active since B is blocked by C. We still
have a scenario of early preemption.

The present analysis, however, doesn’t count C as a cause of E. The prob-
lem is that condition (C3) is violated for the claim that C causes E. Take the
causal model (M, V'), where V' = { A}. This model is uninformative on C
and E. Also, we can infer E from —C in this model. The inferential network
of the deduction is -C — B — E, which is an active path. Hence, -C > E
holds, and so condition (C3) is violated. C doesn’t count as a cause of E
anymore once we add condition (C3) to our analysis.

Note, furthermore, that the causal model of extended early preemption
is structurally indistinguishable from that of the realistic switch. We en-
counter here an instance of the general problem of isomorphic causal mod-
els. On the one hand, two causal models may be isomorphic in the sense of
having the same structure. We can obtain the equations of one model from
those of the other by a one-to-one mapping between their sets of actual lit-
erals and logically equivalent substitutions. On the other hand, our causal
judgements are not the same for the two scenarios which the two models
were supposed to represent, respectively. In brief, two causal models can
be isomorphic, while our causal judgements differ.

Applied to the present case, we can obtain the structural equations of the
realistic switch from the equations of extended early preemption by a one-
to-one mapping of the actual literals of extended early preemption onto the
actual literals of the realistic switch. For example, the equation R = H A F
(of the realistic switch) may be obtained from the equation D = C A C’
(of extended early preemption) by mapping C onto F, C’ onto H, and D
onto R. However, we think that C is a genuine case of E in the scenario
of extended early preemption, while we do not think that the position of a
realistic switch is a cause of the train’s arrival. F is not judged to be a cause
of E in the realistic switch.

Problems of isomorphism are hard to solve for the following reason. Be-
cause of the structural equivalence, there is no way to distinguish between
two isomorphic causal models in terms of relations of entailment and de-
duction. Suppose (M, V) and (M*, V*) are isomorphic. Then it holds that,
whenever there is a certain deduction of E from C in (M’, V'), then there
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is a corresponding deduction of E* from C* in (M*,V*'), where C* and
E* have their obvious meanings. Applied to the present case, whenever
there is a certain deduction of E from C for the model of extended early
preemption, there is a corresponding deduction of E from F for the model
of the realistic switch. And vice versa. Hence, there is no way to distin-
guish between extended early preemption and the realistic switch in terms
of inferential pathways without taking further information into account.

We address the general problem of isomorphic causal models in Chap-
ter 6. In line with other approaches to this problem, we take information
about normality and deviancy into account in order to better capture our
intuitive causal verdicts. This leads to extended causal models (M, V, N),
where N stands for a set of norms and defaults. Our final analysis is able to
solve both problems discussed in this section. First, the problem of realistic
switches. Second, the distinction between realistic switches and extended
early preemption.

Sartorio’s principle is certainly highly plausible and reasonable. But we
must acknowledge that a straightforward implementation by condition
(C3) has undesirable consequences. For this reason, we have to look for
an alternative approach to realistic switches and related problems. Before
we come to that, we study a class of causal scenarios for which considera-
tions of deviancy and normality do not matter.



Chapter 5

Entanglement

In this chapter, we show that our analysis captures our judgments in sce-
narios of entangled causes. Suppose C and A are causal factors of a com-
mon effect. We say that C and A are entangled with one another iff we can
infer from the presence of one causal factor whether or not the other factor
is present as well. A simple case of entanglement is when C is a cause of A,
while C and A have a common effect.

We begin with a simple scenario of entanglement in the next section. Then
we will give a more principled account of entanglement and the inferential
pathways among entangled causes. Thereby, we will give another justifica-
tion of why we need to retain the structural equations of the descendants
of the candidate cause when testing for causation. The remaining sections
are dedicated to further causal scenarios of entanglement.

1 Subcause

Recall the scenario of conjunctive causes from Section 2: two causes are
necessary for a common effect to occur. We can entangle the two causes by
stipulating that one of them is caused by the other. In the resulting scenario,
one of the causes necessary for the effect is brought about by the other. Such
a scenario is depicted by the following neuron diagram:

94
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Figure 39: Subcause

Neuron A fires and thereby excites neuron C to fire. Together they bring
the stubborn neuron E to fire. Had one of A and C not fired, E would not
have been excited. But, crucially, C fires just in case A does. We say that
C is a subcause of A. A and C are entangled causes of the common effect
E. Our recipe translates the neuron diagram of Figure 39 into the following
causal model (M, V):

C=A
E=CAA
A,CE

Entangled causes are tightly related by structural equations. Here, the sub-
cause C depends directly and exclusively on the supercause A. Given the
structural equations, the occurrence of E is determined by whether or not
A occurs. In this sense, the cause C is subordinate to the cause A.

Relative to (M, V), C is a cause of E. There is the following causal model
(M', V") which is uninformative on C and E:

®&—

E=CAA

Figure 40: Agnostic model for subcause

We can infer E from (M’, V') [V'][C] such that the inferential network of this
deduction is C — E. This is an active path since each inference to a literal
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depends on the candidate cause C. We represent the path by a thick arrow
in the following neuron diagram:

@—
el

Figure 41: Active path from C to E

E=CAA
AC

We have shown that C is a cause of E. This is the intuitive verdict for two
reasons. First, E cannot be caused by A alone. Second, E does not occur
without a cause in the scenario. Hence, C should be considered a cause of
E. Ais also a cause of E, as our analysis says.

2 What is Entanglement?

Before we proceed with further scenarios, let us study the inferential path-
ways between entangled causes in a more principled way. We started this
chapter with a preliminary explanation of entanglement: suppose C and
A have a common effect. Then C and A are entangled with one another
iff we can infer from the presence of one causal factor whether or not the
other factor is present as well. Note that entangled causes may be events or
absences. An event may well be entangled with an absence, and vice versa.

The notion of common effect requires some clarification. Suppose C is a
direct cause of D, which is a direct cause of E. We could say that C and D
have a common effect E, but this understanding is not intended. We avoid
the underlying ambiguity by a graph-theoretic explanation of a common
effect. Suppose Lc and L4 are two literals, which are true on some causal
model. We say that L¢ and L4 have a common effect iff there is a variable
E such that there is a directed path from C to E and one from A to E, while
the two paths have no edge in common.

The presence of a common effect does not imply that the corresponding
events or absences are actual causes of this effect. They are mere poten-
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tial causal factors in virtue of the directed paths to the effect. With these
clarifications in place, we can define entanglement.

Definition 5. Entanglement

Suppose (M, V) is uninformative on the literals L4 and Lc. Further, sup-
pose Ly and Lc have a common effect. We say that L4 and L¢ are en-
tangled with one another iff the value of A determines the value of C,
or vice versa, or both. In more formal terms, entanglement means that
(M,VU{La}) E Lcor (M,VU{Lc}) |= La, or both.

Entanglement between two causal factors implies that there is an inferential
pathway from one factor to the other. This implication holds because of the
completeness of our deductive system and Proposition 1.

We must wonder whether entanglement arises, in general, from the con-
nection via the common effect or some other connection. To answer this
question, let us divide the causal model (M, V) into two submodels. One
is intended to capture the inferential relations of the entangled causes with
respect to a common effect. Let us call it (Mg, Vg). Another submodel, call
it (My, V), captures the inferential relations among the non-descendants
of the entangled causes.

To be precise, let My be the set of structural equations of those variables
which are non-descendants of C or A in the causal graph of M. Note that
each variable is a non-descendant of itself. So My contains all structural
equations of the ancestors of C and A, and, in addition, the structural equa-
tions of C and A if there is any. Further, let Viy be the subset of V such that
each variable of a literal in Viy occurs in some equation in My.

The submodel concerning the inferential relations to a common effect may
then simply be defined as the complement of My: Mg contains all struc-
tural equations of M which are not in My. Put differently, Mg contains the
structural equations of those variables which are descendants of C or A,
and different from C and A. Further, Vg is the subset of V such that each
variable of a literal in VE occurs in some equation in Mg. Thus we have
divided a given causal model (M, V) into two submodels (My, Vy) and
(Mg, V). If C and A happen to have more than one common effect, then
the set Mg represents the inferential relations with respect to all of these
effects.

Which of the two submodels is responsible for the entanglement? It may
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well surprise us to see that entanglement does not arise from an inferential
path via the common effect.

Proposition 6. Suppose L4 and Lc are entangled in the causal model
(M, V). Let (M, Vy) and (Mg, Vi) be as just explained. Then it holds
that

(1) <MN, VN U {LA}> - LC or <MN, VN U {Lc}> F LA, or bOth, and

(2) <ME, VE U {LA}> |7Z LC and <ME, VE U {Lc}> |7Z LA.

The first part tells us that entanglement arises from a connection with at
least one ancestor of one of the entangled causes. The second part says
that the inferential path between entangled causes does not involve any
inferences about the common effect. No variable on the inferential path be-
tween the entangled causes is a descendant of one of the entangled causes
and different from the variables of these causes.

In light of this result, an operation of disentanglement falls into place: to
disentangle causes which are entangled, if only hypothetically, we need
to suspend judgement on some structural equation of the causal model
(M, V). This model captures the inferential relations among variables
which are non-descendants of at least one of the entangled causes. By con-
trast, structural equations of the common-effect submodel are not relevant
for the entanglement. Hence, there is no need to suspend judgement on
these equations. We therefore permit suspension of judgement on struc-
tural equations in our analysis, but only with regard to equations of the
non-descendants of the candidate cause. This leads to condition (3) of our
definition of the epochetic conditional >>: the requirement to retain the
structural equations of the descendants of the candidate cause.

In other words, condition (3) leaves room for an operation of disentangle-
ment. This justification complements the justification of this condition in
Section 4. We recall the latter justification here briefly. For E to be an effect
of C, there must be a model (M, V) such that this model is uninformative
on E, and E can be inferred from (M, V)[C]|. Suppose there is such a model.
Then the variable of E is a descendant of the variable of C. It therefore holds
that all potential effects of a candidate cause concern descendants of the
latter. By retaining all structural equations of the descendants of the can-
didate cause, we preserve the inferential relations between the candidate
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cause and its potential effects. Condition (3) thus ensures that the inferen-
tial relations between causes and their potential effects are preserved when
we suspend judgement on the candidate cause and its effect.

The operation of disentanglement has been used tacitly in the above section
and the previous chapter. Recall the causal scenario of subcauses from the
previous section. It is represented by the following causal model: ({C =
AE=CANA}{A CE}). The causal model ({C = A,E = CA A}, Q) is
uninformative on C and A. It is easy to show that C and A are entangled in
this causal model. We can infer literal A from literal C, and vice versa. Let
us now divide the agnostic causal model ({C = A,E = CA A}, D) into two
submodels, one of which is about the common effect E, the other is not. The
first model is given by (Mg, V) = ({E = C A A},@). The causal model
(M, VN) of the non-descendants of C and A is given by ({C = A}, Q).
Clearly, in the context of ({E = C A A}, @), there is no way to infer C from
A or vice versa. By contrast, in the context of ({C = A}, ®), we can easily
infer literal A from literal C, and vice versa. Both claims of Proposition 6
hold, as desired.

It is furthermore illuminating to look at some causal scenarios of the pre-
vious chapter from the perspective of entanglement. Take the short circuit:
the boulder’s dislodgement (F) threatens to hit the hiker by a rolling boul-
der (B), and at the same time provokes an action—the ducking (D)—which
prevents this threat from being effective (—E). Recall the causal model:
({B=F,D = F,E = BA-D},{F, B,D}). The following causal model is
uninformative on B and D: ({B = F,D = F,E = BA—-D},®). However,
B and D are entangled in this model: we can infer literal B from literal D,
and vice versa. Both inferential connections go via the variable F, which
is an ancestor of both B and D. The common effect E, by contrast, is not
relevant for the entanglement. Again, we can observe that both claims of
Proposition 6 hold.

Analogous considerations apply to the switching scenarios in the previous
chapter: the variables R and L indicate which route a train is taking on the
way to a certain destination. It is easy to show that the literals R and —L are
entangled in both switching scenarios. They are entangled via inferential
pathways which go through the position of a switch, represented by vari-
able F. Notice, finally, that we had to suspend judgement on the structural
equation of R in order to show that R is cause of E, the train’s arrival at
the destination. This suspension of judgement amounts to an operation of
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disentanglement, as described in this section. Likewise, we had to disen-
tangle the literals B and D in the boulder scenario in order to recognize D
(ducking) as a cause of —E (the hiker remains unscathed).

We conclude this section with a remark about common causes in the context
of Reichenbach’s (1956) work on probabilistic causation. Notice that we
have a common cause in both the boulder and the switching scenarios. The
dislodging of the boulder (F) causes the boulder to roll toward the hiker
(B), and it also causes the hiker to duck (D). Likewise, the position of the
switch (F) causes the train to go right (R), and it also causes this train not
to go left (—L). With this in mind, we can capture the different behaviour
of common causes and common effects by the following observation:

Observation 1. The effects of a common cause are causally connected in the
sense that we can infer one from the other. But the causes of a common
effect are not connected in this way unless they are connected by a common
cause.

This observation may be seen as the deterministic counterpart to an impor-
tant theorem in Reichenbach (1956, Ch. 19): the effects of a common cause
are statistically correlated. But the causes of a common effect are statis-
tically independent of one another—unless these causes have a cause in
common.

3 Collaboration

Let us return to the discussion of specific causal scenarios. Beckers (2021,
pp. 1361-3) puts forth a series of six scenarios in order to support his causal
model account of causation and to challenge others. The latter four scenar-
ios contain entangled causes. The series consists of modifications of a story
due to Halpern and Pearl (2005, p.882). All the scenarios have the follow-
ing in common. Suppose there is a prisoner and three guards. The prisoner
dies just in case guard C loads guard D’s gun and D shoots, or if guard A
shoots her loaded gun.

In the first scenario, C loads D’s gun, D shoots, A shoots her loaded gun,
and the prisoner dies. The prisoner’s death E is overdetermined by A’s
shot and the collaboration of C and D. We may as well call it a scenario of
conjunctive overdetermination. The collaboration scenario itself is not a case



CHAPTER 5. ENTANGLEMENT 101

of entangled causes, but it gives rise to different scenarios of entanglement
to be discussed below.

Note that there is no obvious neuron diagram for this story of collaboration.
The reason is that neuron E should be a normal neuron and a stubborn
neuron at the same time. E should be normal such that E fires if it gets
excited by A. But E should also be stubborn because it should not fire if it
receives only one stimulatory signal from either C or D.

Let us therefore represent the causal scenario by a dependency diagram.
Recall that such a diagram represents only the dependencies between vari-
ables and what events occur. An occurring event is represented by a grey
node, an absence by a white node. Unlike a neuron diagram, a dependency
diagram does not allow us to read off the structural equations of the causal
scenario. Directed arrows, in particular, stand for any type of dependence.
A dependency diagram thus contains less information than a neuron dia-
gram.

The dependency diagram of the collaboration scenario shows that the value
of the variable E depends on the values of the variables C, D, and A:

©
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Figure 42: Collaboration

The story can be represented by the following causal model (M, V):

E=(CAD)VA
A,C,D,E
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Relative to (M, V), C is a cause of E. There is the following causal model
(M', V") which is uninformative on C and E:

E=(CAD)VA
D

We can infer E from (M’, V') [V'][C] such that the inferential network of this
deduction is C — E. This is a sequence, and so an active path. Obviously,

each inference to a literal depends on C. We have shown that C is a cause
of E.

4 Failed Collaboration

In the second scenario, C loads D’s gun, but D does not shoot. However,
A shoots and so the prisoner dies. Halpern and Pearl (2005) say that C is
not a cause of the prisoner’s death E in this scenario. Beckers (2021) finds
it ‘unacceptable’ to consider C a cause of E if D does not shoot. And we
agree. The story can be represented by the following causal model (M, V'):

E=(CAD)VA
A,C,—D,E

Relative to (M, V), C is not a cause of E. We cannot infer E from
(M, V") [V'][C] if (M’, V') is uninformative on C and E. There are two cases.
First, we remove the structural equation of E such that M' = @. However,
in the absence of this equation, it becomes impossible to infer E once judge-
ment has been suspended on E. The intervention by the candidate cause C
does not enable us to infer E then.

Second, we retain the structural equation of E. Then the following two
causal models are uninformative on C and E: (M, @) and (M, {—D}). But
we cannot make the inference to E from any of these two models after an
intervention by V' and C. The problem is that C is a conjunctive causal
factor of E, and so brings about E only together with D. We have thus
shown that C is not a cause of E. Again, we have discussed this scenario
only in preparation of causal scenarios of actual entanglement to come.
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5 Disjunctive Cause Follows Conjunctive Cause

The following scenarios emerge as variations of the scenarios of collabo-
ration and failed collaboration. Beckers sets forth two desiderata for such
scenarios. First, C is a cause of E iff D shoots. Second, the relation between
D and A should not affect the first desideratum. Our analysis satisfies Beck-
ers’s desiderata, as we will show now.

The scenario is like that of collaboration—except that A and D are entan-
gled: A shoots just in case D shoots. The story is modified thus: A observes
whether D shoots. If so, A shoots as well; if not, not. Here is its dependency
diagram:

Figure 43: A variant of collaboration

The story can be represented by the following causal model (M, V):

A=D
E=(CAD)VA
ACD,E

Relative to (M, V), C is a cause of E. As for the collaboration scenario, there
is the following causal model (M’, V') which is uninformative on C and E:

E=(CAD)VA
D
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We can infer E from (M’, V') [V'][C] such that the inferential network of this
deduction is an active path: C — E. We have thus shown that C is a cause
of E, as desired. By suspending judgement on a structural equation, we
have reduced the present causal scenario to one of collaboration. Thereby,
we have disentangled the causal factors D and A.

6 Conjunctive Cause Follows Disjunctive Cause

The fourth scenario is like the third scenario—except that the roles of A and
D are reversed. The story is modified thus: D observes whether A shoots.
If so, D shoots as well; if not, not. Here is its dependency diagram.

() (&)

Figure 44: Another variant of collaboration

The story can be represented by the following causal model (M, V):

D=A
E=(CAD)VA
A,C,D,E

Relative to (M, V), C is a cause of E. Again, the present scenario reduces to
that of collaboration. There is the following causal model (M’, V') which is
uninformative on C and E:

E=(CAD)VA
D
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We can infer E from (M’, V') [V'][C] such that the inferential network of this
deduction is C — E. This is an active path since each inference to a literal
depends on C. We have shown that C is a cause of E, as desired.

Note that our analysis meets Beckers’s desiderata in the scenarios in which
D occurs. It says C is a cause of E if D occurs, regardless of the relation
between A and D. And it does so by intentionally disregarding the relation
between A and D: the structural equation expressing this respective rela-
tion is suspended. This suspension allows us to reduce the present causal
scenario to that of collaboration.

7 Disjunctive Cause Opposes Conjunctive Cause

The fifth scenario is just like that of failed collaboration—except that A
does the opposite of D. The story is modified thus: A observes whether
D shoots. If so, A does not shoot; if not, A does shoot. The story can be
represented by the following causal model (M, V):

A=-D
E=(CAD)VA
A,C,—-D,E

Relative to (M, V), C is not a cause of E. There is no agnostic model (M’, V')
for which there is a deduction of E from (M’, V/)[V'][C] which has an active
path. There are three cases. First, we remove the structural equation of E
such that M’ = {A = =D}. However, in the absence of this equation, it
becomes impossible to infer E once judgement has been suspended on E.
The intervention by the candidate cause C does not enable us to draw such
an inference.

Second, we suspend judgement on the structural equation of A such that
M' = {E = (CAD)V A}. Thereby, we obtain the causal model of the
scenario of failed collaboration. We have already shown for this model that
Cis not a cause of E.

Third, we retain all structural equations such that M’ = M. Then (M, ®)
is the only causal model which is uninformative on C and E. We can infer
E from (M’,V')[V'][C] using reasoning by cases with respect to D: if we
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assume D, we can infer E from C and D. If we assume —D, we can can infer
E via an inference from —D to A. The inferential network of this deduction
looks as follows:

C—E - E+ E'+ A.

This inferential network is not an active path: A and E” do not depend on
the candidate cause C. In the same way, we can show that reasoning by
cases with respect to A does not give us a deduction of E which has an
active path. We have thereby shown that C is not a cause of E, as desired.

8 Conjunctive Cause Opposes Disjunctive Cause

The sixth scenario is just like the fifth—except that the roles of A and D are
reversed. The story is modified thus: D observes whether A shoots. If so,
D does not shoot; if not, D does shoot. The story can be represented by the
following causal model (M, V):

D=-A
E=(CAD)VA
A,C,—D,E

Relative to (M, V), C is not a cause of E. The argument is similar to the
one in the previous section. There is no agnostic model (M’, V') such that
there is a deduction of E from (M’, V')[V'][C] which has an active path.
Again, we can can distinguish three cases. First, we suspend the structural
equation of E such that M’ = {A = —D}. Without this equation, however,
it becomes impossible to infer E once judgement has been suspended on E.
No intervention with whatever candidate cause—except for E itself—will
allow us to infer E from such a model.

Second, we suspend judgement on the structural equation of A such that
M' = {E = (CAD)V A}. Thereby, we obtain the causal model of the
scenario of failed collaboration. We have already shown for this model that
C is not a cause of E.

Third, we retain all structural equations such that M’ = M. Then (M, @) is
the only causal model which is uninformative on C and E. A simple proof
by cases enables us to infer E from (M’, V')[V'][C]: if we assume A, we can
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infer E directly. If we assume —A, we can first infer D, and then E from D
and C. The inferential network of this deduction looks as follows:

D—-C—E —-E+E".

This inferential network is not an active path: D and E” do not depend on
the candidate cause C. In the same way, we can show that reasoning by
cases with respect to D does not give us a deduction of E which has an
active path. We have thereby shown that C is not a cause of E, as desired.

The result implies that our analysis meets Beckers’s desiderata in the sce-
narios in which D does not occur. It says C is not a cause of E if D does
not occur, regardless of the entanglement between A and D. And it does so
by intentionally disregarding the relation between A and D: the structural
equation expressing this respective relation is suspended. This suspension
reduces the fifth and sixth scenario to the second, namely, the scenario of
failed collaboration.



Chapter 6

Deviancy

In this chapter, we address the problem posed by isomorphic causal mod-
els. The problem is that there are pairs of scenarios which are structurally
indistinguishable for simple causal model accounts, and yet our causal
judgments differ (Hall 2007, p.44). We have already encountered an in-
stance of this problem when comparing a realistic switch with a scenario
of extended early preemption in Chapter 4. The problem means trouble for
all simple causal model accounts which, like our analysis so far, represent
causal scenarios by structural equations and variable values only.

To solve the problem, we amend our analysis. The basic idea is that genuine
causes are deviant. Deviancy of an event is explained in terms of violations
of a norm or default law. Likewise for deviancy of an absence. We show
that the resulting analysis resolves problems arising from scenarios of iso-
morphic causal models as well as related problems concerning omissions
and switches.

1 The Problem of Isomorphic Causal Models

Let us illustrate an instance of the problem of isomorphic causal models.
Recall the causal model of the scenario of overdetermination:

E=CVA
C AE

108
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We transform this causal model into an isomorphic one. To this end, negate
both sides of the structural equation, which yields =E = —=C A =A. Then
substitute C by F, A by =D, and E by —E. This results in the following
causal model:

E=-FAD
F,-D,—-E

The two causal models are isomorphic in the sense of being structurally
indistinguishable. More technically, we can say that they are isomorphic
since the equation of either model can be obtained from that of the other
by a one-to-one mapping between their sets of actual literals and logi-
cally equivalent substitutions. More generally, we say that a causal model
(M, V) is isormorphic to another model (M’, V') iff M’ can be obtained
from M by a one-to-one mapping of V onto V' and logically equivalent
substitutions.

Notice that —E is ‘overdetermined’ by F and —D in the second model, just
as E is overdetermined by C and A in the first one. At the level of neuron
diagrams, however, we yield a different representation. The second model
may be represented by the following diagram:

Figure 45: Bogus prevention

Neuron F fires and thereby would inhibit that neuron E gets excited. How-
ever, since neuron D is not firing in the first place, there is no danger at
all that neuron E gets excited. The prevention of E by F is bogus. And so
F is arguably not a cause of —E. The diagram obviously differs from the
standard neuron diagram of overdetermination.

Here is a story which fits the structure of bogus prevention. There is an
assassin, a potential target, and her bodyguard. The assassin refrains from
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poisoning target’s coffee (—D), and yet target’s bodyguard puts antidote
in her coffee (F). Target survives (—E), of course. Since target’s coffee is
not poisoned in the first place, there is no danger at all that she dies. The
prevention by bodyguard’s antidote is bogus. And so bodyguard’s putting
the antidote in her coffee is arguably not a cause of her survival (Hiddleston
2005, Hitchcock 2007).

Overdetermination and bogus prevention are causal scenarios which are
structurally indistinguishable for simple causal model accounts. We call
a causal model account simple if it only factors in structural equations to-
gether with values of variables. For simple causal model accounts, there
cannot be a structural difference between F in the scenario of bogus pre-
vention and C in the scenario of overdetermination. However, our causal
judgments differ. We judge C to be a cause of E in the overdetermination
scenario, while we do not judge F to be a cause of —E in the bogus preven-
tion scenario.

As the simple causal model accounts of causation, for example Hitchcock’s
(2001) and Halpern and Pearl’s (2005), only factor in structural equations
and values of variables, they cannot distinguish between F and C in the iso-
morphic causal models: C counts as a cause iff F does. This means simple
causal model accounts must incorrectly classify the bogus preventer F as a
cause in the bogus prevention scenario if they correctly classify the overde-
terminer C as a cause in the overdetermination scenario. This is a problem
indeed if we take our commonsensical judgments serious.

Our present analysis of causation is a simple causal model account, and so
is likewise susceptible to the problem of isomorphic causal models. Hitch-
cock (2007), Hall (2007), Halpern (2008), Halpern and Hitchcock (2015), and
Halpern (2016) all aim to solve the problem by taking into account default
and normality considerations. The underlying idea is that the status of gen-
uine causes depends on being deviant from what is normal (Beebee 2004,
McGrath 2005). Our solution is guided by the same idea, but comes with
a more fine-grained distinction of normality and deviancy. Unlike other
accounts using extended causal models, our analysis is able to recognize
normal events and norm-compliant actions as causes of other events.
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2 Deviancy and Normality

What is it for an event or absence to be deviant? We understand this notion
relative to a set of defaults and norms. Roughly, an event is deviant iff it
violates a norm or default law. The relevant norms and defaults are rarely
made explicit in the informal story of a causal scenario, though.

A default law is one which holds for most of its instances, without how-
ever being universally valid. Take the following statement: the tracks of a
railway system are in good condition such that trains do not derail. Most
people assume this default law to hold when they board a train. They also
assume that the locomotive remains operational for the time of their jour-
ney. Unfortunately, there are exceptions to these default laws.

Most norms are understood with respect to human behaviour. Keep your
promises is a simple example of a moral norm. Don’t steel other people’s
property is both a legal and moral norm. These norms correspond to re-
spective default laws. Most people keep their promises most of the time.
Most people respect other people’s property. From a logical point of view,
it’s important that we can express norms and default laws by universal
statements.

In engineering, norms are applied to human artefacts. The thread of a bolt
needs to satisfy a certain standard. Such norms may be relevant to causal
scenarios as well. Roads and railway tracks are required to satisfy certain
conditions. Some everyday default laws hold because human artefacts are
made and maintained such that certain conditions are met.

Finally, there seems to be an asymmetry between absences and occurring
events with respect to their deviancy. By default, an occurring event is
more deviant than its absence. Conversely, it's more normal for an event to
not occur than to occur. The former rule has been stated by Gallow (2021).
Halpern and Hitchcock (2015) assume a similar rule in terms of possible
worlds for at least some events. For our approach to normality we assume
the following law: by default, an event is absent. We will also refer to this
law as the absence rule.

At this point, we may already anticipate why a default law about absences
could help address certain problems of isomorphic models. Some of these
problems are in fact rooted in an asymmetry between absences and occur-
ring events. In a scenario of bogus prevention, the absence of an event be-
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haves logically just like an occurring event in a standard scenario of overde-
termination. But only the latter is considered a genuine cause.

In what follows, we will offer two justifications of the default law about
absences. One is based on statistical considerations, another draws on the
epistemology of absences. Let’s begin with statistics.

In general, an event may be described as an object having a specific prop-
erty at a certain time, where the object is of a certain type. An event of rain
may be described as a property of a certain spatiotemporal region. When
we say that a neuron is active, we assert that an object, which is a neuron,
has the property of being active. Likewise for the event of a kid throw-
ing a rock. Suppose we are asked to consider a certain object of which we
only know that it belongs to a certain type. It's a neuron, a human being,
a spatiotemporal region, etc. Then we are asked whether the object has a
certain property such that the object’s having this property amounts to the
occurrence of a certain event at a certain time.

Of course, there is almost always no way for us to know the answer to this
question. But mere statistical considerations let us infer that the absence
of the event in question is more likely than its occurrence. This holds true
for virtually all events. Suppose we are told that Amber is a human. Then
it’s way more likely that Amber doesn’t throw a rock at a certain time. Not
having any specific information about Amber, it’s more likely that she is
not a philosopher than that she is. Also, it’s way more likely that she does
not live in Montreal than that she does. The absence rule holds also for
events of rain and the firing of a neuron. Not knowing anything about
some arbitrary spatiotemporal region on Earth, it’s more likely that it does
not rain at a certain time than that it does. Actual Neurons are inactive
most of the time. The event of firing is very short as compared to intervals
of inactivity.

Of course, there are exceptions to the statistics of absences just asserted.
Knowing that Amber is a human, we know that she has a heart. Knowing
that an object is a neuron, we know that it is connected with other neurons.
For any small spatiotemporal region on Earth, the presence of daylight is
at least as likely as its absence. Such exceptions, however, seem to be rare
compared to the range of cases for which statistical data favour the absence
of an event over its presence. Hence, by default, the default law about
absences is well justified for a given type of event. We will adopt this law
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for all events considered in a causal scenario.

The default law about absences may furthermore be justified by the epis-
temology of absences. How do we get to believe that an event is absent?
It seems fair to say that we notice at least some events relatively directly
when they are present. By contrast, we do not notice absences in any direct
way. For example, I do not notice directly the absence of an oak tree in my
yard. Arguably, my belief that there is no such tree is inferred, implicitly, by
the following inference: were there an oak tree in my yard, I would notice
it. Since, however, I'm not noticing any oak tree in my yard, there is none.
More generally, our means of knowing absences may be reconstructed by
the following inference pattern: had event A happened, we would have
noticed it. Since we didn’t notice A, we think A is absent. The pattern is
defeasible since sometimes we overlook events. No doubt, we are not om-
niscient concerning the occurring events. And it should not be applied to
events too small to be noticed in any direct way.

Notably, the default law in question has in fact been used in logic-oriented
Artificial Intelligence. It is known there as negation as failure. The idea is
that, if we cannot infer a sentence A from the respective knowledge base,
we take it that A is not true. This is how negation is defined in the program-
ming language Prolog. The above inference pattern concerning absences
thus becomes part of the meaning of negation. Of course, it is an imperfect
way of defining negation since we are not omniscient concerning the oc-
curring events and positive facts. We will not adopt negation as failure as
definition of negation here. But we can recognize the underlying inference
pattern in everyday reasoning, as shown above with reference to oak trees.

For readers with an interest in the history of philosophy, it may be worth
noting that the default law about absences can also be recognized in Leib-
niz’s metaphysics:

why is there something rather than nothing? After all, a nothing is
simpler and easier than a something. And moreover, [...] we
must be able to give a reason why they have to exist as they are,
and not otherwise. (Leibniz 1686/1998, Sect.7, p. 262)

Every existence must have a reason by Leibniz’s Principle of Sufficient Rea-
son. Non-existence is exempt from this requirement. In the absence of any
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reason for an existence, we expect non-existence. An existence thus devi-
ates from what we expect by default.

One more clarification concerning default absences is in order. In virtually
all causal models we use positive literals for events, while the negative lit-
erals stand for absences. But there are exceptions. The position of a switch
is a case in point. If we use a propositional variable S for this position, then
we should not say that S stands for an event and —S for an absence. At
least some switches are symmetric. If so, =S is not a default.

We are now in a position to define two notions of deviancy of a literal. Let
N be a set of norms and defaults.

Definition 6. Weak Deviancy
A literal L is weakly deviant relative to N iff =L can be inferred from a
consistent subset of N.

Definition 7. Deviancy
A literal L is deviant relative to N iff =L can be inferred from a consistent
subset of N, but there is no such subset for L itself.

These two notions of deviancy have complementary notions of normality:

Definition 8. Weak Normality
A literal L is weakly normal in N iff L can be inferred from a consistent
subset of N.

Definition 9. Normality
A literal L is normal in N iff L can be inferred from a consistent subset of
N, but there is no such subset for —L.

In essence, deviancy is understood as violation of a norm or default. Nor-
mality means that a literal conforms to a norm or default. A literal is both
weakly normal and weakly deviant iff it violates a norm or default, and
conforms to another.

Notice that these concepts of deviancy and normality define a partition on
the set of literals. A literal may either be both weakly deviant and weakly
normal, or else deviant, or else normal. A deviant literal is weakly deviant
but neither normal nor weakly normal. Likewise for normal literals.

Consideration of consistent subsets of N is needed since N may be classi-
cally inconsistent. Suppose G stands for the tracks being in good condition.
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Then we have both G and =G in N. =G is in N because of the absence rule.
It may seem counterintuitive to maintain that -G in N despite the default
law that the tracks of a railway network are normally in good condition.
However, the absence rule seems deeply entrenched in our causal judge-
ments, as will be shown below.

It’s finally worth noting that any occurring event is at least weakly deviant
due to the absence rule. No absence is deviant because of this rule. Some
absences, however, are weakly deviant. For instance, if the absence of an
action violates a promise, then this absence is weakly deviant. Any deviant
literal is weakly deviant, but not vice versa. Likewise for normal literals.

The distinction between weak deviancy and deviancy is inspired by the
distinction between credulous and sceptical inference relations in formal
systems of default reasoning (see, e.g., Meheus et al. (2013)). We will ex-
plain below why this distinction is needed for the analysis of some causal
scenarios.

Now that we have a basic understanding of deviancy and normality, we
can extend our causal models (M, V) by an account of deviancy. Let N be
a set of default laws and norms, including the default law about absences.
This set is supposed to contain the defaults and norms which are presumed
to be relevant for the causal scenario in question. We call (M,V,N) an
extended causal model. Such models may be seen as a syntactic counterpart
to Halpern and Hitchcock’s (2015) extended causal models. The latter work
with an order on possible worlds to model normality and deviancy. Such
an ordering may be derived from our extended causal models. But we do
not need such an ordering to define which literals are deviant.

3 Deviancy of Causes

Let us now exploit the notions of deviancy and normality for our analysis
of causation. We set forth two constraints on genuine causes. The first con-
straint is simple: a genuine cause is always at least weakly deviant. The
second constraint is more involved, and concerns the notion of an agnos-
tic model which is supposed to witness an active path from the candidate
cause to its effect. Such a model must contain all weakly normal events
and absences from the context of the candidate cause in the original causal
model. Causal relations are judged against a background of weakly normal
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events and absences if there are any in the context of the candidate cause.
This context is given by the non-descendants of the candidate cause. In
more formal terms:

Definition 10. (M,V,N) =C > E
Let (M, V,N) be an extended causal model. (M,V,N) = C > E iff there
are V' C V and M’ C M such that

(1) (M’, V') is uninformative on C and E.
(2) There is an active path from C to E in (M', V')[V'].
(3) All the structural equations of C’s descendants are in M'.

(4) Cisweakly deviant and any literal C’ € V' \ V/ which is not a descen-
dant of C in M/, and different from C, is deviant.

For simplicity, we say that a literal is a descendant of another literal iff the
variable of the former is a descendant of the variable of the latter—in the
causal graph of the respective causal model. To reiterate, the deviancy con-
dition has two parts. The first part says that the candidate cause is at least
weakly deviant. The second part constrains the range of agnostic mod-
els which may serve as a witness of an active path. In brief, we cannot
suspend judgement on weakly normal events and absences which are non-
descendants of the candidate cause.

The first part of our analysis remains unchanged for extended causal mod-
els:

Definition 11. Cause
Let (M, V, N) be an extended causal model such that V = M. C is a cause
of E relative to (M, V, N) iff

(C1) (M,V) =CAE,and
(C2) (M,V,N) =C>E.
These two definitions make up our final analysis of causation in Part I.

No further additions are needed—as long as we use causal models with
structural equations.
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4 Bogus Prevention

We have already seen a scenario of bogus prevention in the first section: an
assassin does not poison the coffee of a target (—D). Target’s bodyguard ad-
ministers an antidote (F) and the target survives (—E). The antidote would
prevent target’s death in case there had been an attack of poisoning. How-
ever, there is no poisoning in the first place which would bring about tar-
get’s death. Target’s survival (—E) is therefore ‘overdetermined’ by the lack
of poison (—D) and the presence of antidote (F). For convenience, we copy
the neuron diagram for bogus prevention from above:

Figure 45: Bogus prevention

Unlike in the classic prevention scenario, there is no threat to be prevented
in the first place. This translates to the fact that D is not firing in the neuron
diagram. This diagram has an obvious causal model (M, V):

E=-FAD
F,-D,—-E

Relative to (M, V,N), F is not a cause of —E on our analysis. Consider the
following causal model (M, V') which is uninformative on F and —E:

/

E=-FAD

Figure 46: Causal model agnostic on F and —E
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This is the only uninformative causal model in the context of which we
can infer —E from (M, V')[V'][F]. For this model, there is a straightforward
deduction of —E from F whose inferential network is F — —E. This is an
active path since each inference to a literal depends on the candidate cause
F. Obviously, there is no deduction of the effect -E with an active path
other than F — —E. The active path F — —E is visualized by a thick arrow
in the following figure:

@\
.

Figure 47: Active path from F to —=E

E=-FAD

However, the agnostic model (M, @) violates the deviancy condition of the
conditional > for extended causal models. Note that =D is an absence
and therefore at least weakly normal. This implies that =D is not deviant.
Also, =D is a non-descendant of the candidate cause F. For these two rea-
sons, we cannot suspend judgement on =D without violating the deviancy
condition. There is no agnostic model with an active path from —E to F
other than (M, @). F is therefore no cause of —=E on our extended analysis,
as desired. Administering the antidote does not cause the survival of the
target.

5 Extended Bogus Prevention

Consider now the following variant of the above causal scenario. The as-
sassin is a member of a criminal organization, and received an order to
poison the target. He fails to carry out the job and is killed (K) because
of that by a superior. The scenario may be represented by the following
neuron diagram:
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Figure 48: Extended bogus prevention

This diagram has an obvious causal model (M, V):

E=-FAD
K =-D
F,-D,-E,K

Arguably, we have still a scenario of bogus prevention here. There is no
threat to be prevented by administering an antidote. F should therefore
not count as a cause of —E. Our analysis delivers this verdict indeed. For
this to be seen, note that =D is an absence, and for this reason weakly nor-
mal. =D can be derived from a consistent subset of the set N of norms and
defaults. However, unlike in the above scenario of bogus prevention, =D
is not normal since D can be derived from a consistent subset of N as well.
After all, the assassin received an order from a superior. Failure to carry
out the order violates a norm, even though it may be the right thing to do.
Two norms may well be in opposition to one another.

Our solution to bogus prevention remains nonetheless intact. Recall
that literals from the context of the candidate cause—-given by its non-
descendants in M'—need to be deviant in order for us to suspend judge-
ment on them. —D fails to satisfy this condition since it’s weakly normal.
Hence, the agnostic model (M, ®) violates the deviancy condition of the
conditional > for extended causal models. There is no other agnostic
model with an active path from F to —E. Hence, F is not a cause of ~E
on our extended analysis, as desired.
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At the same time, =D is a cause of K on our analysis, as it should be. Failure
to poison the target causes the assassination of the assassin. There are two
agnostic models for which there is an active path from —D to K: (M, {F})
and (M, ®). The active path is simply =D — K. Most notably, both ag-
nostic models satisfy the deviancy condition. For this to be seen, note that
the candidate cause is not required to be deviant by our analysis. Weak de-
viancy suffices. =D is weakly deviant and weakly normal. Hence, we can
suspend judgement on =D without violating the deviancy condition. Thus
—D comes out as a cause of K on our analysis.

Notice that the subtle distinction between weak deviancy and deviancy
matters crucially for the present scenario. The deviancy condition of the
conditional > prohibits suspending judgement on weakly normal events
and absences from the context of the candidate cause. Suspension of judge-
ment is only admitted if the event from the context is deviant, and so not
even weakly normal. By contrast, the candidate cause itself doesn’t have
to be deviant. Weak deviancy is sufficient. Hence, we can suspend judge-
ment on —D when testing for causation between =D and K. But we cannot
suspend judgement on =D when testing for causation between F and —E.
This is why our solution to bogus prevention remains intact for the present
scenario.

In sum, the subtle distinction between weak deviancy and deviancy en-
ables us to capture both of the causal judgments in question: F is not a
cause of —E, while =D is cause of K. Administering the antidote is not a
cause of target’s survival, while the failure to poison the drink is a cause of
the assassination of the assassin. Our analysis is the first to achieve this de-
sirable result. Specifically, extant counterfactual approaches fail to capture
at least one of the two causal judgements.!

6 Bogus Double Prevention

Recall the scenario of double prevention, explained in Section 9 of Chap-
ter 3. There, C is a cause of E because C prevents a threat that would have
prevented E. C is a cause in virtue of blocking the threat to E’s firing, which

1Excep’c for the simple counterfactual account, which, however, is no viable alternative
(Andreas and Giinther 2025a). The present scenario of extended bogus prevention is in-
spired by Wysocki (forthcoming).
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is initiated by B’s firing. Now, let us assume that there is no threat which
could be prevented by C. We then obtain a scenario of bogus double pre-
vention (Hall 2007, pp. 119-20):

(O—O—
()—2)
(&

Figure 49: Bogus double prevention

C’s firing would have inhibited D’s firing if B had fired. However, as B does
not fire in the first place, there is no danger that D fires. And so there is no
danger that E’s firing could be prevented by D’s firing. The first prevention
is bogus and the second is absent. Hall (2007, pp.120) thinks it is ‘absurd
to count C a cause of E’, and we agree. Our recipe translates the neuron
diagram of Figure 49 into the following causal model (M, V):

D =BA-C
E=AAN-D
A,—B,C,—D,E

Relative to (M, V, N), C is not a cause of E. For this to be seen, consider the
following causal model (M, V') which is uninformative on C and E:
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D =BA-C
E=AAN-D
A

Figure 50: Agnostic model for bogus double prevention

This is the only uninformative causal model in which we can infer E from
(M', V')[V'][C]. The deduction of E from C may be represented by the in-
ferential network C — —D — E. This network is an active path since each
inference to a literal depends on the candidate cause C. It may be visualized
as follows:

(D—O

D =BA-C
E=AN-D
A,C

O

Figure 51: Active path from C to E

However, —B is an absence and therefore at least weakly normal. Also, =B
is a non-descendant of the candidate cause and different from that cause.
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For these two reasons, we cannot suspend judgement on —B without vio-
lating the deviancy condition. There is no other agnostic model in which E
can be inferred from C. Hence, C is not a cause of E, as our intuitions have
it.

7 Extended Short Circuit

To further our understanding of the deviancy condition concerning the con-
text of the candidate cause, let us consider a variant of the short circuit from
Section 1 in Chapter 4. In this scenario, a boulder gets dislodged and rolls
toward a hiker. The hiker sees the boulder coming and ducks, so that she
does not get hit. If the hiker had not ducked, however, the boulder would
have hit her.

Now, we extend this scenario by a variable for a second boulder. No such
boulder actually rolls toward the hiker. We want to account for the mere
possibility of a second boulder. The second boulder, if dislodged, would
come from a different direction so that the hiker would not see it. But the
two boulders, if dislodged, would hit the hiker at the same spot. Hence, if
the second boulder were dislodged but not the first one, the hiker would
not duck and actually get injured. This would be the end of the hike.

The second boulder is an empty threat. Our causal judgements should
not change if we take the mere possibility of a second boulder into ac-
count.? Thanks to the deviancy condition, our refined analysis delivers this
result indeed. The structure of the extended boulder scenario can be repre-
sented by the following neuron diagram:

2See Gallow (2021) for a proposal as to which modifications of a causal model should
not alter our causal verdicts. The present scenario is inspired by this proposal.
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Figure 52: Extended short circuit

This neuron diagram has an obvious causal model (M, V):

B=FVG
D=F
E=BA-D
F,B,D,—G,—-E

Unlike the simple short circuit, we now have an agnostic model for which
there is an active path from F to —E. (M, ®) is uninformative on both F
and E. Also, we can infer —E from F in a straightforward manner. The
inferential network of the deduction is F — D — —E. This is an active
path.

However, the agnostic model (M, @) violates the deviancy condition con-
cerning the context of the candidate cause. This model is obtained by sus-
pending judgement on =G, which is a non-descendant of the candidate
cause but not deviant. The absence of a second boulder, represented by
-G, fails to be deviant since N contains the default law about absences.
F is therefore no cause of —E on our analysis. The empty threat of a sec-
ond boulder doesn’t change the causal verdict about the first boulder, as it
should be.

8 Modified Extended Double Prevention

Paul and Hall (2013, p.198-9) ask us to consider a slight modification of
extended double prevention, by adding an idle neuron G:
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Figure 53: Modified extended double prevention

Q.

‘Since G does not fire’, so argue Paul and Hall, ‘the original verdict stands:’
F is not a cause of E (p. 199). Our recipe translates the neuron diagram into
the following causal model (M, V):

B=GVF

F=C

D=BA-C
E=AAN-D
A,-G,F,B,C,—D,E

There are two causal models (M, V') which are uninformative on F and E
such that we can infer E from (M, V')[V'][F], namely for V' = {A} and
V! = {A,B}. Indeed, the two agnostic models have the same active path
fromFtoE: F -+ C — -D — E.

However, the two agnostic models violate the deviancy condition concern-
ing the context of the candidate cause. —G is a non-descendant of the can-
didate cause F, but fails to be deviant. Therefore, we cannot suspend judge-
ment on this literal without violating the deviancy condition. The reason-
ing is analogous to the above scenario of an extended short circuit. F is not
a cause of E on our analysis, as desired.
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9 Isomorphic Modified Extended Double Prevention

Paul and Hall (2013, pp. 198-9) consider a scenario that is isomorphic to
modified extended double prevention:

®@—0—0—0

@&—»—@®

Figure 54: Isomorphic modified extended double prevention

Here, E is a stubborn neuron which requires two stimulations in order to
tire. Paul and Hall (2013, p.199) write ‘C clearly is, this time, one of the
causes of E—a joint cause with A’. Our recipe translates the neuron dia-
gram into the following causal model (M, V):

B=GA-C
H=C
D=BVH
E=ANAD

| AG,C,-B,HD,E

Relative to (M, V,N), C is a cause of E. For this to be seen, consider the
following causal model which is uninformative on C and E:



CHAPTER 6. DEVIANCY 127

(&) o—

& @

B=GA-C
H=C
D=BVH
E=AAND
A,-B

Figure 55: Causal model agnostic on C and E

We can infer E from (M, V')[V'][C] such that the inferential network of this
deductionis C —+ H — D — E. This is a sequence, and so an active path.
Each inference to a literal depends on the candidate cause C. The active
path may be visualized by the following figure:

B=GA=C
H=C
D=BVH

=g E=AAD
/ A,C,~B

Figure 56: Active path from C to E

This time, the agnostic model satisfies the deviancy condition of the condi-
tional > for extended causal models. We obtain this model by suspending
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judgement on literals which stand for occurring events. There is no norm
or default law in place from which we could infer these events. Hence,
all literals in V' \ V/, including G, are deviant. Specifically, the literal of
the candidate cause and all literals in V' \ V/ which are non-descendants of
that cause are deviant. The deviancy condition is therefore satisfied for the
agnostic model in question. C is a cause of E on our analysis, as desired.

10 Omissions

Omissions pose yet another problem for many accounts of causation. In a
scenario of omission, an event fails to occur and so another event occurs.
However, had the event occurred, it would have prevented the other event
from occurring (Paul and Hall 2013, p. 174). For example, I go on vacation
and ask my neighbour to water my plant. The neighbour promises to wa-
ter my plant while I am away. However, the neighbour fails to water my
plant (—F), and so my plant dries up and dies (=E). Had my neighbour wa-
tered the plant as promised, the plant would not have died (Beebee 2004,
pp-294-5). The basic structure of omission is given by the following neuron

diagram:
Figure 57: Omission

C fires and thereby excites E to fire. F does not fire. However, had F fired, it
would have prevented E’s firing. Our recipe translates the neuron diagram
of Figure 57 into the following causal model (M, V'):

E=-FANC
-F,C,E
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There is only one uninformative model (M’, V') in which we can infer E
after an intervention by V' and the candidate cause —F:

E=-FAC

Figure 58: Agnostic model for omission

There is a straightforward deduction of the effect E from the candidate
cause —F whose inferential network is =F — E. This network is obviously
an active path. The deduction may be visualized as follows:

@\
@/

E=-FAC
-F,C

Figure 59: Active path from —F to E

In the absence of any norms and promises, —F is not a cause of E on our
analysis for extended causal models. For —F is normal. Hence, the above
agnostic model violates the deviancy condition of the conditional >. For
illustration, take the absence that Putin did not water my plant. Since Putin
did not make any promises about watering my plant, his failure to do so is
rather normal and not deviant at all. His failure to water my plant is not a
cause of its death.

The crucial point, however, is that my neighbour promised to water my
plant. For this reason, there is a normative expectation that she keeps
her promise. In light of this norm, —F is weakly deviant. Given that my
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neighbour promised to do F, the agnostic model in question satisfies the
deviancy condition for the candidate cause. The deviancy condition for the
context is trivially satisfied. —F therefore counts as a cause on our analysis,
as desired.

What happens if my neighbour does water my plant? Obviously, the plant
doesn’t die then. Watering my plant successfully prevents my plant from
dying. Notably, our analysis captures this causal judgement as well. Take
the causal model (M, {C}), which is uninformative on F and E. This model
has an obvious active path from F to —E. Also, the agnostic model satisfies
the deviancy condition for the candidate cause and its context.

To see why the deviancy condition is satisfied, note that N contains the
default —F because of the absence rule. Hence, F is weakly deviant, even
though it also accords with a norm in N. Both F and —F are weakly deviant.
The deviancy condition concerning the context of the candidate cause is
trivially satisfied. Hence, F comes out as a cause of —E. In sum, the action
of watering my plant and the failure to do so, respectively, qualify as a
cause on our analysis when a promise is made. This result accords well
with our intuitive causal verdicts.?

Extant counterfactual approaches to deviancy struggle to achieve the latter
result. The key idea in Halpern and Hitchcock (2015) is that only those
counterfactual worlds are considered which are at least as normal as the
actual world. If complying with a certain norm is more normal than not
complying, this approach is unable to capture the causal efficacy of the
norm-compliant action. Such an action cannot be a cause of anything. This
result goes against our causal judgements. If a physician, teacher, or police
officer is merely doing her duty, the corresponding actions do have causal
consequences. A patient gets treated, children learn to read, a suspect is
interrogated.

Our syntactic approach to normality and deviancy may well be used to
solve the problem for the analysis suggested by Halpern and Hitchcock
(2015). We may derive an ordering of possible worlds on the basis of the
number of literals—verified by a given possible world—which are normal,
weakly normal, weakly deviant, and deviant, respectively. To give an ex-

3We are grateful to Christopher Hitchcock for having challenged us about about the
general problem of how to recognize the causal dimension of norm-compliant actions in
Hitchcock (forthcoming).
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ample, a possible world which satisfies strictly more normal literals than
another qualifies as more normal than the latter on such an order. The pre-
cise details are not straightforward, though, since some literals may not be
relevant to the respective causal relation.

Finally, notice that an analogous problem arises for events which are
present by default. The presence of oxygen is a case in point. Oxygen is
necessary for combustion, but often not mentioned as a cause. Think of a
forest fire. It is nonetheless correct to say that the presence of oxygen is
a cause of a forest fire, if only a trivial one. Again, the default law about
absences is crucial for our analysis to recognize events as causes which are
present by default. Thanks to the absence rule, the presence of oxygen is
at least weakly deviant. It may therefore qualify as a genuine cause on our
analysis.

11 Realistic Switches

We are now in a position to tackle the problem of the realistic switch. Recall
the neuron diagram of such a switch from Section 11 in Chapter 4:
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Figure 37: Realistic switch

Further, let us recall that the switch (F) and the right tracks being in good
working condition (H) bring about the train’s travelling on the right tracks
(R). And the train’s travelling on the right tracks brings about the train’s



CHAPTER 6. DEVIANCY 132

arrival at its destination (E). This is the causal model (M, V) of the realistic
switch:

L=GA-F
R=FANH
E=LVR
G,F,H,—-L,R,E

We have seen in Chapter 4 that there are exactly two agnostic models
with an active path from F to E: (M,{H}) and (M,{H,—-L}). Both have
F — R — E as an active path. The crucial point, however, is that both
models violate the deviancy condition of the conditional >>. By default, we
expect the tracks to be in good condition and unblocked. In most countries
where trains are taken on a daily basis, railway tracks are in a reasonable
condition.

We can therefore assume H and G by default. This implies that H and G
are weakly normal, and so not deviant. Further, note that H and G are non-
descendants of the candidate cause and different from that cause. Suspend-
ing judgement on either of these two literals therefore violates the deviancy
condition concerning the context of the candidate cause. This is why the
two agnostic models—which have an active path from F to E—violate the
deviancy condition. Hence, F is not a cause of E on our analysis, as desired.
Flipping the switch does not cause the train to arrive at its destination.

Notice that our analysis has no difficulties recognizing other causal rela-
tions of the realistic switch which accord with our causal judgements. F
causes R, which means that flipping the switch causes the train to go right.
H causes R, that is, the right tracks being in good working condition causes
the train to go on these tracks. Notably, H also causes E, which is fairly in-
tuitive. The right track being in good condition causes the train to arrive
since the switch directs the train on these tracks. Finally, R causes E, which
means that the train going on the right tracks causes the train to arrive.

These results can be obtained in a relatively straightforward manner. De-
spite being weakly normal, the tracks being in good condition comes out
as a genuine cause since causes don’t have to be deviant on our analysis.
Weak deviancy suffices. Extant counterfactual accounts are in trouble in
this regard for reasons explained in the previous section.
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Our analysis continues to work for other realistic switches. We will show
this for two more scenarios. Hitchcock (2009, pp. 395-6) presents a combi-
nation of a realistic and the basic switch from Paul and Hall (2013, p.232),
which leads to the following neuron diagram:

Figure 60: Realistic basic switch

Neuron F acts like a switch as to E. F determines whether the signal com-
ing from neuron A travels to neuron E via neuron R or neuron L. Neurons
R and L are stubborn, they will fire only if doubly stimulated. But since
neurons G and H both fire, the scenario is very similar to Paul and Hall’s
basic switch depicted by Figure 35. The realistic basic switch has an obvi-
ous causal model (M, V):

B=A
L=—-FAGAB
R=FABAH
E=LVR
A,G,F,B,H,~L,R,E

The causal verdicts delivered by our analysis for the realistic basic switch
are analogous to those of the realistic switch, discussed in the previous sec-
tion. If G and H are default assumptions, F is not a cause of E. Otherwise,
itis. In any case, F and H are causes of R, and R a cause of E, as it should
be. The demonstration of these results is analogous to the corresponding
demonstration in the previous section.
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Whether or not the default assumptions concerning G and H are justified
depends on the interpretation of the neurons and the variables in the causal
model. Suppose the neurons are taken to represent a scenario of switching
with a train and railway tracks in such a manner that G and H stand for
the tracks being in good condition and unblocked. Then it is reasonable
to assume G and H by default, as has been argued in greater detail in the
previous section. Our intuition that switches are not causes of events which
occur no matter in what position the switch is derives from scenarios like
the train scenario. For such scenarios, it seems justified to assume G and H
by default.

12 Looking Back: Preservation of Causal Verdicts

We have shown that our causal model analysis captures our intuitive causal
verdicts for virtually all scenarios which received some prominent atten-
tion in the literature. All major problems solved, nothing left to do? Not
quite. In this chapter, we have refined our simple causal model analysis
by a deviancy condition on causes and their context. We must wonder
whether this refinement alters any results obtained for the simple causal
model analysis, which does not have a deviancy condition. That is, we
need to show that our extended causal model analysis—which comes with
a deviancy condition—continues to work for the scenarios discussed in the
chapters Classics, Non-Transitivity, and Entanglement.

The demonstration is relatively straightforward. Let us begin with causal
relations shown to qualify as such on our simple causal model analysis.
Suppose (M, V) is a causal model. C counts intuitively as a cause of E.
Also, our simple analysis recognizes this causal verdict. Further, suppose
that the latter result has been established using the agnostic causal model
(M',V"). Then we know that the causal relation between C and E is rec-
ognized by our extended causal model analysis if the following two condi-
tions are met:

(1) All literals in V' \ V' which are non-descendants of C in M’ stand for
occurring events.

(2) No literal in V' \ V/—which is a non-descendant of C—can be inferred
from a consistent subset of the set N of norms and defaults.
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In other words, if an agnostic causal model satisfies these two conditions,
then it satisfies the deviancy condition of the conditional > for extended
causal models. Note that we put the deviancy condition on top of the sim-
ple causal model analysis to build the extended one. No other condition is
added.

Now, we must show that all the demonstrations that some literal C qual-
ifies as a cause of another literal E—given in the chapters Classics, Non-
Transitivity, and Entanglement—do in fact satisfy conditions (1) and (2). Ver-
ification of this claim is tedious, but not difficult. It can be simplified by
two observations. First, none of the agnostic models (M’, V')—used in the
chapters 3, 4, and 6 to show that some C causes some E—is obtained by
suspending judgement on an absence. Second, we did not encounter any
causal scenarios with an occurring event D such that D is a non-descendant
of the candidate cause and stands for a norm-compliant action. Nor did we
discuss a causal scenario in which some event D is a non-descendant of the
candidate cause and occurrent by default.

For example, there is no norm or default according to which a kid throws
a rock. The neurons of a living organism fire a lot, but not by default at
a specific time. The causal scenarios of overdetermination, collaboration,
and its variants concern the killing of a prisoner. At least in the absence of
further information, such actions are not known to comply with any norm.
Quite to the contrary. Hence, the set N does not contain a norm from which
the shooting of a prisoner could be inferred. The events in question are
therefore deviant.

We still need to check the negative results obtained in the chapters 3, 4, and
6. Suppose we have shown that A does not count as a cause of E on our
simple causal model analysis, and this accords with our causal verdicts.
The preempted cause in a scenario of preemption is a case in point. Then
A does not count as a cause of E on our extended analysis either. Note
again that we put the deviancy condition on top of the simple causal model
analysis to build the extended one. Hence, if a causal relation does not pass
the epochetic test for causation of the simple analysis, this relation cannot
pass the test of the extended analysis either.

All problems solved? Unfortunately, we are not done yet. We still need to
investigate whether there are any variants of the causal scenarios—studied
in the previous chapters—such that the deviancy condition has undesirable
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consequences.

13 Revisiting Overdetermination and Preemption

Conjunctive scenarios do not pose any problems for our deviancy condi-
tion. In such a scenario it suffices to suspend judgement on the candidate
cause in order to find an agnostic model with an active path. Things are dif-
ferent for scenarios of overdetermination and preemption. Here we need
to suspend judgement on at least two candidate causes. Now, suppose the
presence of one overdetermining cause accords with a norm or default, but
not the other. Then the former comes out as a genuine cause on our analy-
sis, but not the latter. This result is obtained because weak deviancy suffices
for the candidate cause, but not for events in its context in order to suspend
judgement on them.

For illustration, recall a standard example of overdetermination, discussed
in Chapter 3. A prisoner is shot by two soldiers at the same time, and
each of the bullets is fatal without any temporal precedence. Now, suppose
one of the soldiers had an order to shoot the prisoner, but not the other.
Then the shooting with an order is weakly deviant and weakly normal. The
shooting without an order, by contrast, is deviant. If we test for causation
of the soldier with an order, all goes well. The candidate cause is weakly
deviant and the shooting of the other soldier is deviant. We can suspend
judgement on both without violating the deviancy condition. The shooting
which accords with an order comes out as a genuine cause, as it should be.

Problems arise when we test for causation of the shooting without an order.
Then we cannot suspend judgement on the shooting with an order since
the latter is only weakly deviant and in the context of the candidate cause.
The shooting without an order does therefore not come out as a cause on
our analysis. This is not the desired result. Both soldiers should be held at
least causally responsible for their action. The legal aspect is tricky for the
soldier who was ordered to shoot.

The problem, however, may be solved by properly extending the causal
model used to analyse the scenario. The action of giving an order to one of
the soldiers may be made explicit by an additional variable in the model.
Then we can suspend judgement on the action of giving an order to shoot
the prisoner. This suspension in turn allows us to suspend judgement on
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the shooting of the soldier with an order—when we test for causation of
the shooting without an order. In the absence of explicit information that
an order was given, we can assume that no such order was given by the
default law about absences. Both events of shooting then count as a cause
of the prisoner’s death on our analysis. Extending a given causal model is
well justified if that model leaves out some information from the informal
story of the causal scenario.

However, we must wonder whether the strategy just outlined affects our
solution to realistic switches. Arguably, it does not. There is no specific
event which causes the tracks of a railway network to be in good working
condition. Such tracks need to be maintained in order for them to remain in
good condition, but this is done by default. By contrast, there is no default
law or norm according to which soldiers in the military are ordered to shoot
prisoners of war. Even in a combat situation, there is a specific command to
attack the enemy or to fight an attack. We can make that command explicit
in the respective causal model.

Notice that the strategy of extending a given causal model—to deal with
potential problems of overdetermination—doesn’t affect our solution to the
problem of omissions. We may well extend the causal model by a vari-
able for my neighbour promising to water my plant. Then we can suspend
judgement on that promise. However, we don’t have to. One agnostic
model with an active path which satisfies the deviancy condition suffices
to recognize a causal relation on our analysis. Note, furthermore, that no
absence is deviant on our account of deviancy. This property is crucial
to our solutions to bogus prevention, extended bogus prevention, bogus
double prevention, extended short circuit, and modified extended double
prevention. These solutions therefore are not affected by extending the re-
spective causal model as long as the core structure of the scenario remains
intact.

Let’s move on to causes in scenarios of preemption which are present by
default. Suppose Tom wants to become an underwater diver. As a first step,
Tom learns how to use an oxygen bottle of the diving equipment outside
of the water. When he uses the bottle, it provides his lungs with oxygen.
So the bottle may well be considered a cause of his blood getting enough
oxygen. The oxygen in the ambient air is only a preempted cause of that
effect.
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Obviously, we cannot suspend judgement on the presence of oxygen in the
ambient air when we test for causation of the oxygen in the bottle. This
would violate the deviancy condition concerning the context of the candi-
date cause. However, it’s far from obvious that such a suspension is needed
in order to recognize the oxygen in the bottle as a cause. The action of
putting on the diving equipment rather acts like a switch with regard to
the supply with oxygen. Thereby, Tom switches from the oxygen of the
ambient air to oxygen from the bottle. The switch doesn’t come out as a
cause on our analysis, as it should be. This can be seen from the following
variant of the realistic switch:

@\‘
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Figure 61: Supply of oxygen

A stands for the presence of oxygen in the ambient air, B for the oxygen in
the bottle. O; and O, stand for the lungs taking in oxygen from the ambient
air and the bottle, respectively. The meaning of E is that Tom’s blood gets
enough oxygen. F means that Tom puts on the diving equipment with the
oxygen bottle.

Let’s test for causation of F with respect to E. Note that we cannot suspend
judgement on A without violating the deviancy condition. Hence, the only
agnostic model which is in line with the deviancy condition is (M, {A}).
This model, however, doesn’t have an active path from F to E. F therefore
doesn’t count as a cause on our analysis, as it should be. Putting on the
diving equipment is not a cause of why Tom’s blood gets enough oxygen.

However, it’s easy to show that B is a cause of both O, and E on our anal-



CHAPTER 6. DEVIANCY 139

ysis, which is the desired result. This means that the oxygen bottle is rec-
ognized as a cause of Tom’s lungs and his blood getting enough oxygen.
The causal model (M, {F}) is uninformative on B and E, has an active path
from B to E, and satisfies the deviancy condition. This result holds inde-
pendently of whether B holds by default since weak deviancy suffices for
the candidate cause to satisfy the deviancy condition.

What happens if Tom is not using the diving equipment to get oxygen? Not
using this equipment cannot be a cause on our analysis since —F is not even
weakly deviant. However, A—the oxygen from the ambient air—is then a
cause of E. Tom’s blood gets enough oxygen because of the ambient air.
This is the desired result.

For further illustration, take a scenario about electricity. Suppose a single-
family home has solar panels. Starting from a certain threshold, supply
of electrical power switches from the grid to the solar panels. The grid
provides electricity by default. Not so the solar panels. We can analyse the
scenario exactly along the lines of the above scenario about the supply with
oxygen from an oxygen bottle. Electricity gained through the solar panels
is then recognized as a genuine cause of why the household is supplied
with electrical power, given the solar input is above the threshold.*

What happens if electrical power comes from both the grid and the so-
lar panels? Arguably, we are then in a scenario of conjunctive causa-
tion. At least when we have sufficiently fine-grained information about the
amounts of electrical power from the two sources, respectively, our analysis
is able to recognize both causal relations. Obviously, non-binary variables
are needed then. We have shown in Appendix A how our formalism of
causal models may be extended by such variables.

Notably, we have a backup cause in each of the two scenarios just dis-
cussed. The oxygen in the ambient air and the power from the grid. For
this reason, it makes sense to view them as scenarios of preemption. At
the same time, we have shown that an analysis along the lines of a realistic
switch makes perfect sense as well. This observation nicely illustrates that
we seem to lack a clear delineation between switches and preemption. In
the absence of such a delineation, we may have to be prepared that realistic
switches overlap with some scenarios of preemption. This is not to say that

“The scenario is inspired by Weslake (forthcoming).
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the two types of scenarios are the same.’

Finally, it remains to consider scenarios of overdetermination and preemp-
tion in which the two candidate causes are present by default. We found
it very difficult to construct such a scenario. Here is an attempt. Imagine
ski resorts were to make artificial snow by default in most regions of the
world. Also, they are getting plenty of natural snow by default. Mid win-
ter a ski resort has more than enough snow for skiers to enjoy the runs.
This event may be overdetermined by two causes of snow. Our analysis is
unable to recognize them as such. That’s a clear-cut counterexample. At
the same time, it’s a silly example whose defaults are contrary to the facts.
As a matter of fact, many ski resorts can’t rely on natural snow anymore.
Those who still can, like the ones in Western Canada not too far from the
coast, do not make artificial snow, at least not by default.

In sum, our analysis does face potential problems with scenarios of overde-
termination and preemption in which at least one cause is present by de-
fault or accords with a norm. For some scenarios of overdetermination
we have shown how such problems can be dealt with by an extension of
the respective causal model. For two scenarios of preemption we could
show that an analysis in terms of a realistic switch is perfectly coherent and
so allows us to capture all intuitive causal verdicts. It remains to be seen
whether these two strategies work for all scenarios of overdetermination
and preemption in which the deviancy condition poses a challenge for our
analysis.

One lesson we may have to draw from the challenges observed in this sec-
tion is that our causal verdicts depend, at least to some extent, on an epis-
temic perspective. Some causal judgements can be reconstructed from an
epistemic perspective which takes certain norms and defaults for granted.
For other causal judgements it may be important to disregard certain norms
and defaults. We encourage our readers to further challenge and improve
our analysis.

5Beckers and Vennekens (2018) suggested that the realistic switch qualifies as a scenario
of preemption. To our mind, this proposal goes too far, but there seems to be a grain of
truth in it. Sartorio (2005) discusses the distinction between switches and preemption at
greater length, without however arriving at a general account of switches. So far, our un-
derstanding of switches seems to be almost entirely guided by examples which are taken
as paradigmatic.
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Chapter 7

A Humean Analysis

So far, our epochetic analysis of causation relied on causal models with
structural equations. Such equations represent certain elementary causal
dependences. They are elementary in the sense that no further analysis of
the dependence relation is provided. Any attempt at a general explana-
tion of the causal meaning of a structural equation takes some causal or
modal notion as antecedently understood, or runs into problems inherent
in Lewis’s counterfactual analysis of causation.

It’s time to dig deeper. It is time to take up the challenge of analysing
causation without taking any causal or modal notions as primitively given
and antecedently understood. Specifically, we aim at a theory of causation
which does not rely on causal laws. In this sense, our analysis of causation
in Part IT will be reductive. Moreover, we hold on to the logical form of an
explicit definition when analysing causation.

How to distinguish between causes and effects in a deterministic setting?
To get started, we will reconsider the Humean convention: a cause pre-
cedes its effect in time. In essence, we define that C is a cause of E—relative
to an epistemic state—iff the following three conditions are met. First, C
and E are occurring events. Second, after suspending judgement about C
and E, we can infer E from C. And third, C precedes E.

This analysis is still preliminary since it does not address well-known prob-
lems of the Humean approach to the direction of causation: spurious cau-
sation in common-cause scenarios, simultaneous causation, and backward
causation. This chapter begins with an overview of how we will solve and
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address these problems. Then we will study key concepts of belief revi-
sion theory in order to define an epochetic conditional for epistemic states
with beliefs about laws and presumed facts. The laws and presumed facts
come with information about temporal relations, yet are free of any causal
notions. We will begin with a minimalist and syntactic notion of law such
that our theory does not rely on any substantial notion of law of nature.

In the subsequent chapters, we will then refine our Humean analysis such
that the problems of spurious and simultaneous causation are taken care of.
In the final chapter of this part, we will accommodate the conceptual pos-
sibility of backward causation. We achieve this by a disjunctive approach
to the direction of causation along the lines of extant accounts of backward
causation.

1 The Humean Convention

We set out to analyse causation, starting from what we called an epochetic
conditional:

A > B if and only if, after suspending judgment about A and
B, we can infer B from the supposition of A.

We take this conditional to help us understand what it is for a proposition
to be a reason for another proposition. The notion of reason is thus under-
stood in a broadly logical way: reasons are inferential in nature. Given A
and B are believed, A is a reason for B—relative to our respective epistemic
state—iff B is inferable from A in the context of a set of other propositions
which we continue to believe after judgement has been suspended about A
and B. Propositions are assumed to have a sentential representation.

This analysis of the notion of reason has still some shortcomings, which
may be referred to as symmetry problems. Sometimes A comes out a reason
for B and so does B for A, while intuitively we consider only one of the two
propositions as reason for the other. Fortunately, such symmetry problems
disappear in our reductive analysis of causation, as will become obvious
below.

Reasons are different from causes. At least some reasons are not causes of
what they are a reason for. A case in point are reasons for beliefs in math-
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ematics. To analyse causation using some notion of reason, we therefore
need to explain how we can distinguish between reasons which correspond
to causes and those which do not.

How do we get from reasons to causes? Our strategy throughout this in-
vestigation is to impose further constraints on the inferential relations be-
tween antecedent and consequent of the conditional >>. In Part I we have
strengthened the definition of > by the framework of causal models and an
inference relation in such models. Together with a few more refinements,
this additional constraint led to a relatively simple and surprisingly pow-
erful analysis of actual causation.

How do we get from reasons to causes without structural equations? We
begin our journey by reconsidering the Humean convention: a cause pre-
cedes its effect in time. We are well aware that this convention has come out
of fashion in philosophy.! Our reconsideration therefore needs to be well
justified. Let’s begin with a review of the main reasons why the convention
has been rejected:

(1) The Humean convention is violated in some common-cause scenarios
of spurious causation.

(2) Itis also violated in causal scenarios of simultaneous causation.

(3) It rules out a priori the conceptual possibility of backward causation.

(4) The convention makes the direction of causation a matter of defini-
tion.

(5) It blocks any account of the direction of time in terms of the direction
of causation.

All of these arguments will be carefully considered in our analysis. The
three subsequent chapters are dedicated to problems (1) to (3), respectively.
For now, let us briefly indicate how our final analysis addresses these prob-
lems.

IThe ranking-theoretic analysis by Spohn (2006, 2012) seems to be the only prominent
exception to this trend.



CHAPTER 7. A HUMEAN ANALYSIS 146

As in Part I, we will impose further constraints on the inferential relation
between antecedent and consequent of the conditional >>. The first con-
straint is a proof-theoretic variant of the Humean convention: any inferen-
tial step—on the inferential path from the antecedent to the consequent—
must be forward-directed in time if the inferred sentence asserts the occur-
rence or absence of an event. Second, all laws used on the inferential path
from the antecedent to the consequent must be non-redundant. These two
constraints will eventually allow us to tell spurious and genuine causes
apart from one another.

As regards presumed scenarios of simultaneous causation, the Humean
convention helps us recognize an explanatory asymmetry between cause
and effect. In essence, the cause in a relation of simultaneous causation has
a Humean causal explanation which is independent of the effect, but not
vice versa. This observation allows us to account for scenarios of simulta-
neous causation within a broadly Humean approach.

The notion of backward causation has remained controversial in the liter-
ature. Despite substantial efforts, we are far away from any consensus on
how this notion could be understood properly. Backward causation refers
to causation which violates the Humean convention: causation where the
effect precedes its cause in time. It remains unclear what empirical find-
ings could count as empirical evidence for instances of backward causation
in our world. It remains likewise unclear what it means that some event
causes another if the Humean convention is dropped altogether.

We will review prominent counterfactual alternatives to the Humean con-
vention in Chapter 10. Drawing on Reichenbach (1956), we will then show
that Woodward'’s interventionist account implicitly relies on the Humean
convention. Lewis’s attempt to derive the direction of causation from the
semantics of counterfactuals will be shown to run into seemingly insur-
mountable problems. Our assessment and criticism complements extant
critical work on Lewis’s attempt.

Should backward causation then be rejected outright because causation is
so difficult to understand without the Humean convention? Not quite. De-
spite appearances to the contrary, we do not have to choose between the
Humean convention and the conceptual possibility of backward causation.
There is middle ground between the two. Dowe (2000, Ch. 8) has devel-
oped a disjunctive approach to the direction of causation in the framework
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of Reichenbach (1956). While Dowe’s proposal is not intended to combine
backward causation with the Humean convention, it may well be used to
do so. Consequently, we will outline how backward causation may be un-
derstood within our broadly Humean approach. The key idea is that the
Humean convention is but one of two means to distinguish between causes
and effects.

It is furthermore striking that Price’s (1996) account of backward causation
is based on a disjunctive approach to the direction of causation as well. The
Humean convention remains in place in a restricted and modified form.
Our study of the literature on backward causation thus yields a surprising
result: prominent, viable accounts of causation which are aimed at captur-
ing both forward and backward causation retain the Humean convention
in one form or other. This is an important motivation for our reconsidera-
tion of the convention.

To address objection (4), we suggest a Poincarean view of the Humean con-
vention. Maintaining that causes precede their effects is neither an arbitrary
stipulation nor a purely factual statement. It's rather comparable to a Car-
napian postulate which determines, in part, the meaning of both causation
and temporal order. Nonetheless there remains a conceptual order between
the two concepts in the sense that causation is more theoretical than tem-
poral order. Details will be worked out in the next section. Objection (5) is
motivated by Kant’s proposal to reverse the presumed conceptual order of
the Humean convention. We will likewise discuss it in the next section.

Our main goal for Part II is to develop a unified and reductive theory of
deterministic causation which is extensionally adequate with respect to our
causal judgements in science and everyday life. Such a theory may well be
developed without answering the question of why the Humean convention
is so important for our notion of causation.?

2See Price (forthcoming), for a recent proposal to answer this question from an inter-
ventionist perspective. We see some interesting connections between epochetic condition-
als and Price’s interventionist approach. Price (1996) distinguishes between hypothetical,
counterfactual interventions concerning the past and potential interventions concerning the
future. The epistemic situation for the latter is such that we do not have knowledge yet as
to whether the cause and the effect occur.
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2 Poincarean Conventions

Does the Humean convention make the direction of causation a matter of
definition? Well, it depends on how we understand the notion of conven-
tion. Commonly we think that conventions could be chosen differently
without severe consequences. Using a specific convention is a relatively ar-
bitrary choice. People in the United Kingdom could have chosen to drive
on the right-hand side of the road without severe difficulties, at least at a
certain time in history. However, there is a more subtle and richer notion
of convention to be found in Poincaré’s philosophy of science.

Poincaré (1902/1952) realized that certain laws of physics as well as cer-
tain assumptions concerning measurement of space and time escape any
direct verification and justification. Moreover, Poincaré tried to show that
established formulations of laws of physics as well as assumptions about
spacetime are guided by some principle of simplicity. Different formula-
tions and assumptions are conceivable, which notably would capture the
same observable facts. Poincaré was not in principle opposed to using non-
Euclidean geometries in physics. He just thought that any non-Euclidian
formulation of mechanics would be more complicated than its Euclidean
counterpart. This raises the following question: are the laws of physics and
assumptions concerning spacetime mere arbitrary stipulations or factual
statements? Poincaré’s answer was neither.

Looking from the perspective of Quine (1961), we can say that Poincaré
already realized that the laws of physics are neither analytic nor synthetic.
While a Poincarean convention has an analytic and a synthetic dimension,
it is neither purely factual nor arbitrary. It is a non-arbitrary convention
which has factual content in the context of other conventions. It thus very
much resembles a postulate in the sense of Carnap’s (1958) semantics of
theoretical terms. Such postulates have a twofold function: first, setting
forth the empirical content of a scientific theory. Second, determining the
meaning of theoretical terms. Notably, Poincaré (1902/1952, p.90) himself
literally claimed that certain scientific propositions acquire meaning only
by virtue of adopting certain conventions.

What is the benefit of a more nuanced understanding of the notion of con-

3For a detailed study of substantial commonalities among the semantic views of
Poincaré (1902/1952), Quine (1961), and Carnap (1958), see Andreas (2010).
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vention for our analysis? The standard reading of a Humean approach
to causation assumes that temporal relations are epistemically accessible
without causation. We don’t need a Humean theory of causation to make
judgements about temporal relations. Put differently, there is a clear-cut
conceptual order between time and causation: time is less mysterious than
causation so that it can be used as basis for an analysis of the latter. To
be precise, the concept of temporal succession is less mysterious than the
direction of causation since we can determine temporal relations among
events without information on their causal order.

However, the mere dictum that causes precede their effects does not imply
any conceptual order between causation and time. We might as well view
time and causation as theoretical concepts whose meanings are intertwined
and in part determined by a Humean theory of causation. Most of the
time, our causal judgements seem to be based on a prior determination of
temporal relations. But there may be exceptions. Special relativity seems
to be a case in point: based on the postulates that causal interactions need
to be mediated by a signal and that no causal signal can travel faster than
light, we come to discriminate between the past and future of an event,
and an area of spacetime which is neither in the past nor in the future of
the respective event.t

Our semantic views about causation are inspired by Ramsey (1931b), Car-
nap (1958), and Sneed (1979), whose overall research programme concern-
ing theoretical terms may be described as follows: we can analyse our un-
derstanding of the theoretical terms in a theory T in terms of axioms and
what we can do with the axioms in the context of information which is not
theoretical relative to T. A piece of propositional information is considered
not theoretical relative to a theory T iff this theory is not used to obtain that
information, not even implicitly by the use of certain measurement meth-
ods.

With this understanding of theoreticity in mind, we aim to analyse our
causal judgements in terms of axioms and inferences which use informa-
tion which is not theoretical relative to our theory of causation in at least a
large subset of applications of this theory. No single causal or modal judge-
ment needs to be taken as primitively given. No direct perception of causes

“This delineation of past and future is expressed by Minkowski spacetime. The details
are complex, which is why we do not attempt to give an introduction to relativistic physics
here.
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needs to be assumed. In a similar vein, Schurz and Gebharter (2016) have
shown how probabilistic causation may be understood as a theoretical con-
cept in the framework of Sneed (1979). The Humean convention is an op-
tional axiom in their reconstruction.

If we determine temporal relations on the basis of causal relations, the latter
are based on causal hypotheses which are inferred from Humean causal
relations. Such hypotheses are inferred from causal relations which are
recognized as such using the Humean convention on the standard reading.
Arguably, special relativity is a case in point. There, we take it for granted
that propagation of light is caused by emission from sources rather than
by absorption. In technical terms, ‘waves and radiation fields exhibit a
temporal asymmetry in the presence of wave sources’ (Frisch 2014, p. 167).°
Special relativity does not imply a violation of the Humean convention. It
only suggests a partial reversal of the conceptual order standardly assumed
for this convention.

If we were to accept a complete breakdown of the presumed conceptual
order between time and causation, could we still pursue our investigation?
This may well be possible. But our analysis of causation would then lose
much of its epistemological motivation. We use the term analysis in the
spirit of Russell (1918/2010) and Carnap’s related concept of explication in
his (1950). Much of Russell’s and Carnap’s philosophical work is driven by
the methodological principle that there is some level of knowledge and in-
formation which is less theoretical and less mysterious than the level to be
analysed and explicated. Some residual empiricism—however refined, rel-
ativized, and modified by holistic elements—is needed to read our theory
as an epistemological analysis of causation.

References to theoretical terms may thus remind us that we have nowadays
logical means of analysis which go well beyond a simple reductionism,
without however giving up the empiricist spirit in the early work of Russell
and Carnap altogether. If we accept a partial reversal of the Humean con-
ceptual order between time and causation, this should make us question a
simple adoption of a Humean analysis of causation. We should then not
assume that temporal relations among events are completely determined
and given without causal knowledge and causal hypotheses. There re-

5This phenomenon is also called asymmetry of radiation. See Frisch (2014, Chs. 5 and 7) for
a detailed discussion.
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mains nonetheless a wider basis of the analysis where temporal relations
are accessible without any causal knowledge.

In sum, a Poincarean view of the Humean convention has merit for the fol-
lowing two reasons. First, we can use this convention in a theory of causa-
tion without assuming any conceptual order between time and causation.
Temporal and causal order are two theoretical concepts whose meanings
are intertwined completely. Second, we can admit a partial reversal of the
conceptual order between the directions of time and causation, which im-
plies a more moderate deviation from the standard reading of the Humean
convention. In our theory of causation we pursue the second option. For
lack of space, we do not further investigate which role the Humean con-
vention plays in fundamental physics.

Our analysis of causation in Part II qualifies as reductive in two dimen-
sions. First, no causal or modal notions are taken as primitive and an-
tecedently understood. Second, we hold on to the logical form of an explicit
definition when analysing causation. Our final analysis—which merges the
analyses from Part I and II—remains reductive in the sense that no causal
or modal notations are taken as antecedently understood. This analysis has
the form of an explicit definition too.

There remains to discuss the reversal of the standard conceptual order be-
tween time and causation. In his Critique of Pure Reason, Kant (1781/1998)
argued that recognition of temporal relations presupposes judgements
about causal relations.® Knowledge of causal relations is needed to de-
termine temporal relations. This way, he tried to refute Hume’s scepticism
about the lawfulness of nature. As influential as Kant’s transcendental phi-
losophy has been, his causal theory of temporal order has not been very
well received. More importantly, a theory of temporal order may well be
based on causation by means of the Humean convention. While such a
theory reverses the presumed conceptual order of the Humean convention
completely, it is still consistent with this convention. Kant did not so much
question the Humean convention, but turned its presumed conceptual or-
der on its head.

To our mind, Kant did not get the epistemology of temporal judgements
right. Put more carefully, highly sophisticated interpretations of Kant’s

6See Analogies of Experience in Section III, Chapter II, Book II of Division I in Kant
(1781/1998).
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transcendental analytics are needed to square his views on causation with
our judgements concerning temporal order. For it seems as if we can see
bodies falling to the ground—rather than rising to the sky—without any
law of Aristotle’s, Galilei’s, or Newton’s physics. If such laws were im-
plicitly used when determining temporal order, what are our reasons for
not using the opposite laws, which say that bodies rise to the sky? Causal
knowledge may well sometimes be used to determine temporal relations,
but a complete reversal of the Humean conceptual order is difficult to un-
derstand.

3 Belief Revision Theory

Belief suspension is at the centre of our epochetic approach to causa-
tion. The theory of belief revision—which can be used to define belief
suspension—has been in the background of our approach from the outset.
It is time to take a closer look at this theory. We will now explain key con-
cepts of belief revision theory in a more explicit manner. This will enable
us to define an epochetic conditional in a manner which is more general
than the definitions of > in Part I. The latter are confined to causal models
(M, V). We now want to explain the conceptual and logical foundations of
epochetic conditionals in general.

The framework of AGM-style belief revision theory is syntactic: beliefs are
represented by sentences in the sense of a formal logical language. The
overall objective is to study how sets of beliefs change when some new
piece of information is received. Such a study aims to capture both nor-
mative and descriptive elements of belief change. AGM is an acronym
which stands for the authors of the landmark paper ‘On the Logic of The-
ory Change’ by Carlos Alchourrén, David Makinson, and Peter Gardenfors
(1985).

In the wake of the original AGM theory, semantic approaches to belief re-
vision have been developed by Grove (1988), Spohn (1988), van Ditmarsch
et al. (2008), and many others. The key idea is to represent epistemic states
by sets of possible worlds and a plausibility ordering on such sets. Seman-
tic and syntactic approaches to belief revision have their genuine benefits,
respectively. We use a syntactic approach in terms of belief bases—to be
introduced below—for mainly two reasons. First, it allows for a concise
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representation of concrete causal scenarios. Second, belief bases help us
solve problems of spurious causation in a manner which is not available to
semantic approaches. Of course, we assume that the sentences in a belief
base have some intuitive meaning, which however is not further specified.
Sometimes we speak of propositions when referring to intuitively mean-
ingful sentences, following the terminology in Gardenfors (1988).

Suppose K is a set of sentences which represent the beliefs of an agent,
while A is a sentence which represents a single belief. In the AGM frame-
work, we have three types of belief change concerning a belief set K by a
sentence A:

(1) Expansion K+ A
(2) Revision K x A

(3) Contraction K + A.

An expansion of K by A consists in the addition of a new belief A to the
belief set K. This operation is not constrained by any considerations as to
whether the new epistemic input A is consistent with the set K of present
beliefs. Hence, none of the current beliefs is retracted by an expansion.
K + A designates the expanded belief set.

A revision of K by A, by contrast, can be described as the consistent inte-
gration of a new epistemic input A into a belief system K. If A is consistent
with K, it holds that K * A = K 4 A, that is, the revision by A is equivalent
to the expansion by A. If, however, A is not consistent with K, some of
the present beliefs are to be retracted as a consequence of adopting the new
epistemic input. K * A designates the revised system of beliefs.

A contraction of K by A, finally, consists in retracting a certain sentence A
from the presently accepted system of beliefs. This operation will be used
to define the suspension of judgement about A for our epochetic condi-
tional. It is crucial that contractions are guided by some principle of mini-
mal mutilation: when retracting a belief A from K, we should hold on to as
many of the beliefs in K as possible, without however retaining a subset of
K which implies A. K + A designates the belief set after the retraction of A.

Belief changes can be defined in various ways. A large number of different
belief revision schemes have been developed in the spirit of the original
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AGM theory. We will assume that epistemic states are represented by belief
bases. A belief base H is a set of sentences which represent the explicit
beliefs of an agent. Belief base revision schemes are guided by the idea that
the inferential closure of a belief base H gives us the belief set K(H) of H:

K(H) = Inf(H).

K(H) contains all beliefs of the epistemic state H, that is, the explicit beliefs
and those beliefs which the agent is committed to accept because they are
inferable from the explicit beliefs. Inf is an inferential closure operation
which contains classical logic. We assume that Inf is given by the conse-
quence operation Cn of classical logic. Hence, the belief set K(H) is defined
by Cn(H). By definition, a belief set is logically closed, while a belief base
is normally not. To be precise, a belief base need not be logically closed.

For our preferred approach to belief revision, it is crucial that revisions may
be defined in terms of contractions and expansions:

Kx A= (K+-A)+ A. (Levi identity)

Once we have retracted —A, we obtain a belief set K’ which is consistent
with A. Hence, we have K’ x A = K’ + A. The Levi identity has been used
to define the revision of both belief sets and belief bases.”

It is sometimes helpful to distinguish between the belief system K and the
epistemic state S which underlies it. Henceforth, we shall make this distinc-
tion, and write K(S) for the belief set K of the epistemic state S. Epistemic
states contain further information about the beliefs of an agent. In partic-
ular, they include some ordering of epistemic priority on such beliefs. The
rationale for such an ordering is as follows. Some beliefs are more firmly
established and more deeply entrenched than others. A case in point are
the laws of scientific theories which have been well confirmed and which
are being applied widely and successfully. If we are forced to retract some
of our beliefs—because the new epistemic input is not consistent with the
total body of our currently held beliefs—we should hold on to our more
firmly established beliefs as much as possible, and try to regain consistency
by giving up less entrenched ones.

In our theory of causation, we work with two types of belief bases. One
has just two levels: the upper level, containing the laws which describe

"For a comprehensive introduction to belief revision theory, the reader is referred to
Gardenfors (1988) and Hansson (1999). Hansson (1993) originated the study of belief bases.
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relations among events. And the lower level, which contains beliefs about
presumed atomic facts. We have used another type of belief base in our
account of deviancy: it contains—in addition to laws and facts—certain
default laws and default assumptions. The latter type of belief base is not
needed for the reductive analysis in Part I, though. Here is a visualization
of the simpler type of belief base:

Laws
Facts

Table 1: Belief base with two levels

The levels of epistemic priority affect the determination of belief changes:
when we retract a belief A, we first retract atomic beliefs which imply A in
the context of the laws. If necessary, we also retract one or several laws, but
only if the retraction of A cannot be achieved by retractions of beliefs with
lower epistemic priority.

Note that our causal models (M, V) may be read as belief bases with ex-
actly two levels. M is a set laws, which have the logical form of structural
equations. V is a set of presumed facts. Belief revision theory was already
in the background in Part I. We left the belief revision foundations implicit
in this part to make our causal model analysis of causation more accessible.

We understand the notion of law in a minimalist and syntactic way: any
universal sentence and any implication explicitly believed to be true—by
the respective epistemic agent—is considered a law from the perspective
of that agent. A sentence is universal iff it begins with a universal quanti-
tier. We shall also speak of generalizations in order to refer to the laws of
an epistemic state. We follow the convention that generalizations may be
represented by implications in propositional logic since propositional vari-
ables may stand for events at the type-level. We do not distinguish between
laws and generalizations. Obviously, our syntactic characterization of laws
is wider than the intuitive notion of law of nature. We shall say more about
the latter notion in the next chapter.

Likewise, we work with a syntactic characterization of beliefs concerning
presumed atomic facts: such beliefs are expressed by an atomic sentence or
the negation of such a sentence. For simplicity, we speak of facts when re-
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ferring to beliefs about presumed atomic facts. The notion of fact is always
considered relative to an epistemic perspective here.

The syntactic characterization of laws may be thought to run into the fol-
lowing problem. Suppose I believe A, which stands for the occurrence of an
event. By classical logic, I also believe A V B, and consequently -~A — B,
for any arbitrary sentence B. The important point to note here is that a
belief base contains only explicit beliefs. Put more carefully, belief bases
are intended to represent the explicit beliefs of an epistemic state. With
this qualification in mind, we can say that I explicitly believe A, but not so
—A — B. The latter sentence is therefore not a member of the belief base
which is supposed to model my epistemic state.

Using belief revision theory, we can furthermore explain the distinction be-
tween law-like and trivial implications as follows. Suppose we believe
A — B in an epistemic state S. In formal terms, A — B € K(S). Then
we can say that A — B is a non-trivial belief in S iff A — B € K(S) + -A
and A — B € K(S) + B. That is, an implication is non-trivially believed iff
we continue to believe it if our beliefs are contracted by the negation of the
antecedent or the consequent of that implication. Believing an implication
non-trivially means that we believe in a connection between antecedent
and consequent. If, by contrast, we were to believe A — B merely because
we believe — A, then we would have to give up A — B when giving up —A.

Similar considerations apply to the syntactic characterization of laws in
terms of first-order sentences which begin with a universal quantifier. Sup-
pose I believe A, which does not have any occurrences of any quantifier.
Then I also believe VxA. But the latter is not an explicit belief of mine. I
simply do not explicitly believe that it holds true for all objects x that Aris-
totle was a philosopher. Put differently, a non-trivial universal sentence
must have non-trivial instances. Such instances may be obtained by re-
placing some occurrence of a variable with a constant using the inference
rule of Universal Elimination in a system of natural deduction. In yet other
words, a sentence which begins with a universal quantifier is considered a
law only if the universal quantifier occurs non-vacuously at the beginning
of that sentence.

If we accept a law, we accept some universal sentence or an implication
whose propositional variables have a type-level meaning. Adopting a law,
however, does not necessarily imply that the agent believes all of its in-
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stances to be true. This is not so for two reasons. First, we can take the
belief base as an idealized theory which captures the phenomena of some
domain quite successfully, while there remain cases in which some instance
of a law fails to hold true. Second, belief revision theory allows for a dis-
tinction between strict and non-strict laws. It even contains an account of
default and ceteris paribus reasoning. We take the notion of non-strict law to
comprise both default and ceteris paribus laws. The two types of laws may
well overlap substantially.

Thus we have explained the basic concepts of belief revision theory, includ-
ing the notion of a belief base with a ranking of epistemic priority. These
explanations suffice for a general account of epochetic conditionals in belief
revision theory. Further details concerning the operations of an expansion,
contraction, and revision of a belief base are explained in Appendix B.

4 Epochetic Conditionals

Our epochetic conditionals draw on the Ramsey Test, an epistemic evalu-
ation recipe for conditionals devised by Ramsey (1931a). Its core idea has
been pointedly expressed by Stalnaker (1968, p. 102):

First, add the antecedent (hypothetically) to your stock of be-
liefs; second, make whatever adjustments are required to main-
tain consistency (without modifying the hypothetical belief in
the antecedent); finally, consider whether or not the consequent
is then true.

It was then Gérdenfors (1978) who translated this test into the language
of belief changes and who insisted more forcefully than Stalnaker on an
epistemic understanding of conditionals. Using the AGM framework, he
was able to define a semantics of conditionals in terms of belief changes:

A>CeK(S) iff CEK(S)*A (RT)

where > stands for the conditional connective. K(S) * A designates the
revision of the beliefs of an epistemic state S with the sentence A. The
Ramsey Test thus defines that a conditional A > C is to be accepted in a
belief system K(S) iff the consequent C is in the revision of K(S) by the
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antecedent A. Unlike Gadrdenfors (1978), we require that A and C be non-
conditional sentences.

We now define a conditional with the following intuitive meaning: A > C
iff, after suspending any beliefs in K(S) as to whether A and C are true or
false, we can infer C from A in the context of the remaining beliefs. In more
formal terms:

Definition 12. Belief function B(A)
Let A be a sentence and S an epistemic state.

A ifA€K(S)
B(A)={-A if-A€K(S)

1 otherwise.

A> CeK.(S) iff Ce (K(S)+B(A)VB(C))+ A. (SRT)
Equivalently,

A> CeKa(S) iff (K(S)=B(A)VB(C)),AFC

where I designates the relation of provability in classical logic. The first
step of (SRT) consists in an agnostic move which lets us suspend judgement
about the antecedent and the consequent. The contraction by B(A) V B(C)
gives us an epistemic state in which we do not believe A, B, = A, or —B. For
example, if we believe the antecedent A to be true in the epistemic state
S we need to contract the beliefs of S by A. If, by contrast, we believe A
to be false, we need to contract by —A. If we believe neither A nor —A,
no actual contraction is needed. This is expressed by a contraction by L,
which stands for falsum or a contradiction. Provided the beliefs in S are
consistent, contraction by | does not change the beliefs in S.8

Once we have suspended judgement about antecedent and consequent, we
check whether or not we can infer the consequent C from the antecedent A
in the context of the remaining beliefs of the epistemic state. If so, A > C &
K- (S). Otherwise, A > C ¢ K~ (S). K~ (S) is the belief set of the epistemic
state S, extended by the Ramsey Test for some conditional.

80ur conditional > is inspired by a proposal by Rott (1986) to strengthen the Ramsey
Test.
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We have thus defined an epochetic conditional for epistemic states S in
general to indicate that such a conditional is not necessarily tied to belief
bases. We assume henceforth, however, that the respective epistemic state
S is given by a ranked belief base H = (Hj, ..., H,). Thus we obtain:

A CeK.(H) iff Ce (K(H) < B(A)VB(C)) + A.

This is the definition of our strengthened Ramsey Test upon which we build
our Humean analysis of causation. K(H) is given by the classical logical
closure of the union of all components of H: we believe a sentence A in an
epistemic state S = H iff A is a classical consequence of the set H; U...U H,
of all beliefs of the ranked belief base H.

Recall that the contraction operation - is constrained by the following prin-
ciple: when contracting an epistemic state by a belief A, retain as many of
the currently held beliefs as possible—without however retaining A. Belief
changes are guided by the maxim of minimal mutilation, which goes back
to Quine (1961). We explain further details and give fully explicit defini-
tions of the contraction and revision of a ranked belief base in Appendix B.

5 Causation

In the previous section, we have worked out the semantics of an epochetic
conditional > in belief revision theory. This conditional has been defined
for epistemic states which have the logical form of a ranked belief base
with two levels: a set of laws and a set of presumed facts. The laws are
represented by implications and universal sentences, the presumed facts
by literals. Unlike causal models of the form (M, V) in Part I, no modal
or causal notions are assumed for the formulation of laws and facts. Nor
do we assume any more substantial notion of law of nature, which would
go beyond the syntactic characterization of laws in the above section. We
will further develop our syntactic approach to laws so as to capture some
proper notion of law of nature in the next chapter when addressing the
problem of spurious causation.

Our new epochetic conditional >> gives us an approximate explanation of
what it is for a proposition to be a reason for another.
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Definition 13. Reason
A is a reason for B—relative to an epistemic state S—iff A and B are in
K(S),and A > Bisin K- (S).

Readers who skipped the more technical section on belief revision theory
may note that K(S) stands for the beliefs of the epistemic state S, includ-
ing beliefs implied by the explicit beliefs of S. K- (S) contains all epochetic
conditionals accepted from the epistemic perspective of S. It is defined by
a strengthened Ramsey Test. Epistemic states are given by a finite set of ex-
plicit beliefs together with a simple ranking of priority among these beliefs.
Basically, laws have epistemic priority over presumed facts.

Note that we use the symbol > for a variety of different epochetic con-
ditionals. In Part I, various such conditionals have been defined for causal
models (M, V). In Part I, > is defined for ranked belief bases whose mem-
bers do not contain any explicitly causal notions. We will further refine and
strengthen this conditional in what follows. We trust the reader will gather
the respective meaning of >> from the context.

How do we get from reasons to causes? We have argued that the Humean
convention is worth a reconsideration in order to discriminate between
mere inferential reasons and reasons which are causes or correspond to
causes. For now, the convention leads us to the following analysis:

Definition 14. Cause
Let C and E be events. C is a cause of E—relative to an epistemic state S—iff

(C1) C,E € K(S),
(C2) C> E € K-(S),and
(C3) C precedes E.

As in Part I, we use upper case Latin letters for both events and proposi-
tions which claim that the respective event occurs.

How should we understand the temporal order between two events which
partly overlap with one another? When we say that C precedes E, we mean
that C comes into being before E. Suppose the temporal existence of C or
E, or both, is represented by an interval. Recall that the left-hand limit of
a temporal interval represents the beginning of it. The left-hand limit of a
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time point ¢+ may be identified with ¢ itself. Then we say that C precedes E
iff the left-hand limit of C is temporally earlier than the left-hand limit of E.

This analysis of causation is still very much a preliminary one. As ex-
plained at the beginning of this section, there remain the problems of spu-
rious, simultaneous, and backward causation. We will address and solve
these problems in the subsequent chapters. We must also wonder which of
the scenarios of actual causation, discussed at length in Part I, are captured
by our preliminary Humean analysis. Now, it is easy to show that causal
scenarios of overdetermination, conjunctive scenarios, and combinations
of the two are not a problem. Some scenarios of prevention and double
prevention are captured as well.?

To capture scenarios of preemption, we may utilize the notion of active path
in a manner analogous to our analysis in Part I. Recall that this notion rests
on the notion of inferential dependence on the candidate cause, which in
turn has been explained in terms of natural deduction. Preempted causes
fail to have an active path to the effect since any deduction of the effect
requires reasoning by cases in such a manner that one subproof contains
inferential steps which do not depend on the candidate cause. This obser-
vation seems to hold as well for at least some first-order representations of
preemption scenarios without causal models. There remain some details to
be worked out, though.

These observations give rise to a more general question: could we translate
our epochetic analysis in Part I into one which is based on the Humean
convention instead of structural equations? We tend to answer the question
in the affirmative. The main challenge of the translation concerns condition
(3) of the epochetic conditional > for causal models, defined in Chapter
2. This condition protects structural equations which determine variables
which are descendants of the presumed cause. This poses a problem for the
translation since the concept of descendant rests on the causal graph of the
respective scenario. It is not obvious how we can derive this graph from our
reductive analysis in Part II. To translate the condition in question, we may
require that we me must not retract laws whose descriptive terms stand for
events which are simultaneous or later than the presumed cause. Again,
this is a mere outline of a translations which requires further elaboration.

The envisioned translation would have important benefits. Most impor-

9See Andreas and Giinther (2020) for details and a demonstration of these results.
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tantly, it would give us a reductive analysis of causation which captures
an unprecedentedly large range of causal scenarios. However, our simple
Humean analysis is already awaiting further refinements in view of the
problems of spurious, simultaneous, and backward causation. If we were
to merge the latter refinements with a translation of our final analysis in
Part I, the resulting analysis may lose appeal, simply because of its com-
plexity. Also, we are hesitant to make the reader study once again a large
number of causal scenarios with us.

With these concerns in mind, we decided to go for another strategy. We
will focus in Part II on the problems spurious, simultaneous, and backward
causation. Then we say what it is for a causal model to be verified by an
epistemic state which contains only laws and facts without any explicitly
causal notions. The idea is, roughly, that a causal model (M, V) is veri-
tied by an epistemic state S iff all elementary causal relations of the causal
model analysis come out as genuine causal relations on the reductive anal-
ysis, and vice versa. This biconditional continues to hold if we change the
valuation from V to V' and revise S by V’. A causal relation between two
literals L4 and Lp is elementary in a causal model (M, V) iff there is a di-
rected edge from A to B in the causal graph of M and L, is a cause of Lp
relative to (M, V).

The relation of verification between an epistemic state and a causal model
is understood in analogy to the model-theoretic relation of verification. In
model-theoretic semantics, we say that a certain interpretation, or struc-
ture, of a formal language verifies a set I' of sentences iff all members of T’
are true on this interpretation. One and the same set of sentences may be
verified by a variety of different interpretations. Likewise, a causal model
may be verified by a variety of different epistemic states.

The architecture of our theory is thus as follows. At the most fundamen-
tal level, we have epistemic states whose explicit beliefs are free of explic-
itly causal notions. But we do have information about temporal relations
among events at this level. At the second level, we define causation us-
ing belief revision theory, the Humean convention, and some refinements
concerning the inferential relations of the epochetic conditional >>. Then,
at the third level, we have causal models which may be verified by epis-
temic states of the first level, given the reductive analysis. Finally, at the
fourth level, we define actual causation in terms of causal models, as done
in Part I.
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On the face of it, it may seem surprising to use epistemic states as foun-
dation of causal models. Note, however, that Hume’s project is to analyse
causation in terms of concepts which are less mysterious and less theoret-
ical than causation is. To make progress with this project, it would not
be very helpful to invoke some metaphysical notion of reality at an early
stage. We will not forget about the world, though. In the Conclusion and
Synthesis of this book, we will outline how our theory could be anchored
in reality.



Chapter 8

Spurious Causation

Spurious causal relations may well be considered the most severe problem
for a Humean approach to causation. There are causal scenarios where we
have a regular connection between two types of events, one event always
precedes the other, and yet we do not consider the earlier event a cause
of the later event. This happens in common cause scenarios when the two
effects are not simultaneous. Not surprisingly, the problem of spurious
causation does also arise for our Humean analysis set forth in the previ-
ous chapter. This calls for an inferential characterization of spurious causal
relations.

In this chapter, we show that spurious causes differ from genuine causes in
terms of the laws used on the inferential path to the effect. In essence, there
is no forward-directed inferential path from the spurious cause to its effects
such that all laws on this path are non-redundant. Put differently, the laws
on the inferential path from the genuine cause to its effect have a greater
unificatory power than the laws on the inferential path from the spurious
cause to this effect. The notions of redundancy and unificatory power will
be explicated relative to the beliefs of an epistemic state.

1 Common Causes

Let us a begin with a simple and abstract scenario of spurious causation.
Suppose event C is a common cause of the events A and E, as depicted

164



CHAPTER 8. SPURIOUS CAUSATION 165

by Figure 62. Further, suppose A can be caused only by C-type events,
while C-type events cannot fail to bring about an E-type event. C always
produces A. The causal relations between the common cause and its effects
are forward-directed in time. Let us finally assume that event A precedes
event E.

Figure 62: Common cause

It is easy to see why the scenario in question is trouble for an inferential
analysis of causation which takes a simple Humean approach to the direc-
tion of causation. Since A-type events can only be caused by C-type events,
we can infer C from A. Since C cannot fail to cause E, we can infer E from
C. Given the inference relation is transitive, we can therefore infer E from
A. Together with A preceding E, this implies that A is a cause of E. This
verdict, however, does not agree with our causal judgements. We think of
A as a mere spurious cause of E, as will become more obvious when we
look at concrete scenarios of common causes below.

Our presumed knowledge about the abstract causal scenario may be repre-
sented by the following belief base:

C+— A C—E
C,AE

For simplicity, we leave beliefs about the temporal relations among A, C,
and E implicit. Recall that the different levels of this belief base stand for
different epistemic priorities: the implications have higher priority than the
atomic sentences. Given this representation, we can solve the problem of
spurious causation by an additional constraint on the inferential paths from
the antecedent to the consequent of our conditional >:
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A > B if and only if, after suspending judgment about A and
B, we can infer B from the supposition of A such that each in-
ferential step is forward-directed in time.

We say that an inferential step is forward-directed in time iff no premise as-
serts the occurrence of an event which precedes the event asserted by the
conclusion. The notion of forward-directed inferential step is thus under-
stood in the weak sense of not being backward-directed in time. To give
a simple example, the inference from C to A is forward-directed in time,
while that from A to C is backward-directed in time.

There remain some ambiguities, though. For example, not every inferential
step proceeds from premises which assert the occurrence of an event. The
following definition addresses this and related ambiguities.

Definition 15. H ¢ C

Let H be a set of sentences and C be a sentence. Only literals and conjunc-
tions of literals are taken to assert the occurrence or absence of an event. We
say there is a forward-directed deduction of C from H—in symbols H r C—
iff there is a natural deduction of C from H such that, for all inferential
steps P/, if I asserts the occurrence or absence of an event, then this event
or absence does not precede any event or absence asserted by a premise in
P or by a premise in a subproof which is a member of P. This requirement
applies to all inferential steps in the main proof and any subproof.

The refinement of our epochetic conditional falls now into place:
A>p Ce K. (S) iff J(S+B(A)VB(C)),AkrrC. (SRTF)

Recall that S stands for an epistemic state which has the form of a belief
base with different levels of epistemic priority. |J(S <+ B(A) V B(C)) is the
set of explicit beliefs after suspension of judgement on A and B.

Let the epistemic state S now be given by the above belief base ({C <>
A, C — E},{A,CE}). For simplicity, we leave the temporal relations
among the events implicit. It is then easy to show that A >r E does not
hold. Hence, if we adopt (SRTF) instead of (SRT) (as defined in Section
2), we obtain the favourable result that A is not a cause of E, as it should
be. The notion of forward-directed deduction may be considered a proof-
theoretic variant of the Humean convention.
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However, the suggested approach to spurious causation does not go very
far. The problem is that, for the scenario in question, it holds universally
true that an A-type event is followed by an E-type event. Hence, our belief
system may well contain the implication A — E, which says that an E-type
event occurs whenever an A-type event does. There then is a forward-
directed inferential path from A to E. Hence, even our refined analysis
wrongly counts A as a cause of E once A — E is adopted as an explicit
belief.

To make further progress, let us study some concrete scenarios of spurious
causation. The drop of a barometer, which is followed by a storm, is a clas-
sical example. When a low-pressure system approaches a specific region,
a barometer located in this region drops. The air pressure indicated by the
barometer falls. Low-pressure areas often bring stormy weather. In this
scenario, we have two properly causal relations and one spurious causal
relation. The arrival of a low-pressure system causes the barometer to drop
and brings stormy weather. It is a common cause of two different effects:
the barometric column falls and strong winds occur. Since the barometer
starts falling before the wind becomes actually stronger, it holds true that
strong winds follow the drop of the barometer. However, we do not con-
sider this drop a genuine cause of the storm. Thinking that stormy weather
is caused by a falling barometer strikes us as incorrect.

The barometer example is often discussed in the context of probabilistic
causal relations (see, e.g., Reichenbach (1956, p.193)). Rightly so. There
is no deterministic correlation between low-pressure systems and stormy
weather. Meteorologists are cautious to not overestimate the predictive
power of barometer readings.! Since our investigation is confined to de-
terministic causation, the barometer example is not well suited to study
spurious causal relations.

Here is a better example. As is well known, water freezes at temperatures
below zero degrees Celsius. By convention, the zero point of the Celsius
scale equals the freezing point of water. At the same time, we consider air
temperatures below zero degrees Celsius a cause of water to freeze. And

1'Recall that anticyclones (high-pressure cells) are associated with clear skies and that
cyclones (low-pressure cells) frequently bring clouds and precipitation. Thus, by noting
whether the barometer is rising, falling, or steady, we have some indication of the forthcom-
ing weather.” (Lutgens et al. (2013, p. 253), emphasis added). See also Lutgens et al. (2013,
p-243n).
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we consider the air temperature a cause of the thermometer reading. This
is particularly obvious for liquid thermometers which are based on the cor-
relation between the volume of the liquid in the thermometer and the tem-
perature of the surrounding air, but it holds also true for other types of
thermometers. Hence, air temperature causes a certain thermometer read-
ing, just as air pressure causes a certain barometer reading. In this simple
causal scenario, we can recognize two genuine causal relations:

(1) If the air temperature drops below zero degrees Celsius, liquid water
starts to freeze.

(2) If the air temperature drops below zero degrees Celsius, a thermome-
ter indicates an air temperature below zero degrees Celsius.

The following causal relation, however, is of the spurious type:

(3) If a thermometer indicates an air temperature below zero degrees Cel-
sius, liquid water starts to freeze.

We view only the first two conditionals as properly causal in the sense that
the antecedent stands for a cause and the consequent for a corresponding
effect. The third conditional represents a spurious causal relation. How-
ever, all conditionals satisfy the Humean convention: the antecedent pre-
cedes the consequent. It takes some time for water to freeze once air tem-
perature drops below zero degrees Celsius. No thermometer immediately
responds to a change of the temperature in the environment. Finally, a
thermometer drops below zero degrees before we can observe the wa-
ter to freeze. In the background we have processes in which a thermo-
dynamic system approaches thermodynamic equilibrium. Such processes
take some time. The spurious cause occurs before the other effect of the
common cause because a thermometer approaches thermodynamic equi-
librium faster than a medium-sized reservoir of water.

For clarification, we should point out that the conditionals (1), (2), and (3)
have exceptions. They must be read with a ceteris paribus qualification or
taken as elements of an idealized model. Big reservoirs of water, such
as lakes, start to freeze only if the temperature drops below zero degrees
for several days, if not weeks. So we assume that the water reservoir has
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medium size and that the temperature drops significantly below zero de-
grees for several days. Also, we implicitly assume that there is no salt in
the water that would change the freezing point. The thermometer must be
properly gauged. Such qualifications, however, may not prevent us from
using deterministic models. After all, we study causal judgements in de-
terministic models about the world. Sets of ceteris paribus laws give rise to
such models. For simplicity, we often leave certain conditions of properly
applying deterministic models implicit. In the present example, we take
the conditionals as strict laws of a simplified theory about the aggregate
phase of water in everyday contexts. The theory intentionally abstracts
from kinetic theories of heat, which however will be considered in Section
12.

There are furthermore real-world examples of spurious causation which
do not involve measurement devices. A causal analysis of lightning should
distinguish at least three events: (i) an electrostatic discharge through the
atmosphere between a cloud and the ground, (ii) the flash of the lightning,
and (iii) the thunder. Physics tells us that the electrostatic discharge is—via
the rapid production of heat within the region of the air where electricity
is conducted—the common cause of the flash and the thunder. From the
viewpoint of physics, the flash is not a genuine cause of the thunder. It's a
mere spurious cause of the latter.

Why are we hesitant to call the flash in the sky a cause of the thunder?
Why is a temperature reading below zero degrees Celsius not considered a
proper cause of liquid water to freeze? More generally, why are measure-
ment readings considered mere spurious causes of phenomena which we
think are actually caused by the measured quantities? After all, we have a
rather strict correlation between spurious causes and their effects. Also, the
spurious cause precedes its effect. What is wrong with spurious causes?

To answer this question, we take recourse to unificationist ideas about ex-
planation: the correlations between spurious causes and their effects is
less important to account for diverse phenomena in a unified manner than
the laws used to infer effects from genuine causes. For example, general
correlations between measurement readings and natural phenomena are
derivable from more fundamental laws about these phenomena. The cor-
relation between a thermometer reading below zero degrees and the freez-
ing of liquid water can be derived from our knowledge about the working
of thermometers and the physical properties of water. Hence, there is no
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need to view such a correlation as a proper law of nature. Put differently,
laws directly connecting spurious causes with their effects are redundant,
while laws used to infer effects from genuine causes have some unifica-
tory power.? These observations suggest an inferential characterization of
spurious causation.

Definition 16. Spurious Causation
C is a mere spurious cause of E iff all forward-directed inferential paths
from C to E use some redundant law.

If, by contrast, C is a genuine cause of E, we have a forward-directed in-
ferential path from C to E such that all laws used on this path are non-
redundant. Such laws are key to causal inferential paths. Of course, we
need to say more about the notions of non-redundancy and unification.

Our approach to spurious causation may be motivated by the best system
account of laws of nature, commonly referred to as the Mill-Ramsey-Lewis
account of laws. For a genuine cause, there is a forward-directed inferential
path to the effect such that all laws used on this path are laws of nature—
in the sense of at least some construals of the best system account. Mere
spurious causes lack this property.

A clarification concerning the concepts of law, generalization, and impli-
cation is in order here. Recall that we adopted a minimalist and syntactic
understanding of the notion of law in the previous chapter: any universal
sentence and any implication explicitly believed to be true—by the respec-
tive agent—is considered a law by that agent. Thanks to this minimalist
notion of law, we can represent redundant and non-redundant laws in the
setting of classical logic. Moreover, we follow the convention that laws may
be represented by implications in propositional logic since propositional
constants may stand for events at the type-level. We do not distinguish
between laws and generalizations. A law of nature in the narrow sense is
called a proper law or simply a law of nature.

The unificationist account of explanation goes back to Friedman (1974) and Kitcher
(1989). We will say more about this account in Section 12.
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2 Non-Redundant Laws

What is a unificatory law? Let us begin with the distinction between re-
dundant and non-redundant sentences. Here is a simple proposal: ¢ is re-
dundant in a set I of sentences iff it can be inferred from the other members
of I'. In symbolic notation:

Definition 17. Redundancy
A sentence ¢ is redundant in a set I' of sentences—relative to an inference
relation F—iff g € Tand T'\ {¢} I ¢.

Put simply, ¢ is redundant in I iff, when taking ¢ out of I', we can get it
back from the rest of I' using inferences of the respective logic. This un-
derstanding of a redundant sentence gives us a straightforward notion of a
non-redundant one:

Definition 18. Non-redundancy
A sentence ¢ is non-redundant in a set I' of sentences—relative to an infer-
ence relation F—iff ¢ € Tand I'\ {¢p} I/ ¢.

Put simply, ¢ is non-redundant in I' iff, once we take it out of I', we cannot
get it back by logical inferences. Of course, we need to specify the logic
according to which we understand the notion of redundancy. In the ab-
sence of further results, classical logic suggests itself as the simplest choice.
Let us now formalize some of the above scenarios of spurious causation to
see if the proposal works with classical logic. In the previous section, we
began with an abstract scenario of spurious causation, which was formally
represented as follows:

/ CoA C—E A—E
@ C,_ A E

Figure 62: Common cause
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Now, the key idea of our envisioned analysis is that a candidate cause is a
mere spurious cause of E iff we need to use some redundant law in order
to infer the effect in a forward-directed manner. There is no inferential path
from the spurious cause to the effect such that all laws used on this path are
non-redundant. For the present scenario, our envisioned analysis implies
that A — E is redundant in the set H = {C <+ A,C — E, A — E} relative
to classical logic. This holds true indeed. The bad news, however, is that
C — E is likewise redundant in the set H relative to classical logic. For
this to be seen, start a subproof with the assumption of C. Then you can
infer E using C <+ A and A — E. By Implication Introduction, you can
infer C — E. Our envisioned analysis therefore implies that C is a spurious
cause of E, which is absurd.

However, let’s not give up too quickly on our inferential approach to spu-
rious causation. Our proposal may still work for concrete scenarios of spu-
rious causation for which further information about the causal factors of
the different effects is available. The present formalization of a common
cause may turn out too abstract to allow for a proper distinction between
spurious and genuine causes. Also, it’s worth considering non-classical in-
ference relations in order to understand the distinction between redundant
and non-redundant laws. When studying concrete scenarios of spurious
causation, we will see below that classical logic does not always suffice to
infer the common cause from the spurious cause in the respective causal
scenario. This inferential step, however, is needed in order to show that the
law which directly connects the spurious cause with its effect is redundant.
Let us therefore study abductive inferences in the next section.

3 Abductive Inferences

The notion of an abductive inference originates from the work of Charles
Sanders Peirce. It is introduced there as an inference to a hypothesis that
is capable of explaining certain facts. Such an inference has the following
form:

The surprising fact, C, is observed.

But if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true.
(Peirce 1931, Vol. 5, p. 189)
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If we translate the condition ‘if A were true, C would be a matter of course’
with “C is inferable from A’, we obtain the following inference rule:

A

cC _C
A

In essence, abductive inferences are inverted deductions. This view is fun-
damental to logical approaches to abductive reasoning. A ...C stands for a
subproof in which C is derived from A.3

Logical approaches to abductive reasoning hold on to the view that ab-
duction is an inference to a hypothesis which explains certain phenom-
ena, which have been observed. If we use abductive reasoning to estab-
lish causally explanatory hypotheses, we infer causes from given effects.
An account of abductive reasoning may thus prove useful to capture the
inference from the spurious cause to the common cause in common cause
scenarios. We need to establish this inference in order to show that the law
which directly connects the spurious cause with its effect is redundant rel-
ative to a certain logic. Of course, we cannot simply introduce an inference
rule of the form

CcausesE, E

C .
This would be flatly circular since we would have to take some causal rela-
tions as primitively given. However, we have already established a proto-
theory of causation which does not take any causal or modal notions as an-
tecedently available. According to this proto-theory, a central requirement
for causation is that there is a forward-directed inferential path from cause
to effect. Our proto-theory thus suggests the following abductive inference
rule:

30ur inference rule is inspired by the notion of a conjectural inference relation in Flach
(2000, p.96). See Schurz (2008) for an overview of different types of abductive inferences.
Brewka et al. (1997, Ch. 5) survey accounts of abductive reasoning in knowledge represen-
tation.
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The index F in the symbol :r indicates that all inferential steps in the sub-
proof from C to E are forward-directed in time—in the weak sense that
none is backward-directed in time. If an inferential step consists of sen-
tences which are not about events, then this inferential step is said to be
forward-directed as well. We can say it is vacuously forward-directed.

There are still some problems with this proposal, though. First, suppose in
a disjunctive scenario—where an event may be brought about by different
causes—the effect event occurs. The present inference rule would then al-
low us to infer that all disjunctive causes are occurrent. But this conclusion
may not be true, even if we assume that everything happens for a reason
or cause. We should only infer that at least one of the disjunctive causes
occurs.

A second problem concerns the logical form of the assumption and conclu-
sion of the subproof. The notation implicitly assumes that both are atomic
sentences. This constraint, however, excludes conjunctive causes. On the
other hand, if we do not impose further constraints on assumption and
conclusion of the subproof, we end up with a far too liberal inference rule
of abduction. For example, we could infer A A B from B if A stands for an
event which does not occur later than event B. This would be absurd. In
light of these problems, we suggest the following inference rule of abduc-
tive reasoning:

151 oy
F . ‘F
BB B .
o V... Vay, . (Abduction)

If we can infer § from each of a1, ap, and a,, in a forward-directed manner,
and B is given, then this rule allows us to infer a; V...V a,. However, we
need to take the following conditions of application into account:
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(A1) Foralli(1 <i<mn),a;t/c B.

(A2) If there is a forward-directed subproof from ¢ to 5, then there is some
i (1 <i<mn)suchthat¢ ¢ a;.

(A3) Foralli(1 <i < n),thereisno ¢ such that there is a forward-directed
subproof from ¢ to B, «; F¢; ¢, and ¢ ¢y ;.

These conditions prevent us from inferring ‘too much’ using the inference
rule Abduction. Condition (A1) says that f must not be a logical conse-
quence of any assumption «y,...,a,. This condition blocks the inference
from B to A A B, which we should not consider valid.

We may wonder how we can infer B from a; if the former is not a logical
consequence of the latter. To see this, recall that a subproof from «; to
may well depend on premises and conclusions in the superordinate proof.

The symbol : stands for a mere subproof and may not be confused with
the relation of derivability, often abbreviated by the symbol I~. Laws of
background theories about the respective causal scenario may be given in
the premises of the superordinate proof.

Condition (A2) requires us to consider all forward-directed subproofs of a
given sentence B when inferring a cause of why B is true by Abduction—
except for those subproofs whose assumption is logically at least as strong
as the assumption of a subproof which has already been considered. We say
that a subproof from ¢ to § has been considered if such a subproof figures
as antecedent of the abductive inference in question. A few examples may
help us understand Condition (A2) and its motivation.

Condition (A2) solves the above problem of disjunctive causal scenarios.
Suppose A and B are individually sufficient to bring about E. We know
that E occurs, and we have forward-directed subproofs from, respectively,
A and B to E. Then (A2) ensures that we cannot use the abductive inference
rule to infer A. Nor can we infer B. For in the following abductive inference
from E to B, we have ignored the subproof from A to E:
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Not considering the subproof from A to E in this inference amounts to a
violation of (A2). We are only allowed to infer A V B, as it should be:

A B

F F

E E E
AVB

Unlike the former, the latter inference satisfies condition (A2).

Condition (A3) demands that each a; is among the (classically) logically
weakest assumptions from which we can infer the event p in a forward-
directed manner. In other words, for each «;, there must not be ¢ such that
¢ is (classically) logically weaker than «;, and yet we can infer  from ¢
in a subproof in a forward-directed manner. Condition (A3) prevents us
from abductively inferring a conjunction of events when just one conjunct
is sufficient to bring about the effect. Suppose there is a complex scenario
with several events, while C is the only cause of E. So there is a corre-
sponding forward-directed subproof from C to E. E cannot be inferred
in a forward-directed manner from events other than C, given our theory
about the causal scenario. We know that E occurs, but we do not know
which other events occur. Obviously, we can infer from E that C occurs by
Abduction. But we cannot infer, for example, D A C, even if D precedes E.
The following application of the abductive inference rule violates condition
(A3):

DAC

P
E E
DAC

Condition (A3) is violated here because C is logically weaker than D A C
and E can be inferred from C in a subproof in a forward-directed manner.

Let us also look at a conjunctive scenario. Suppose there is a forward-
directed subproof from A A B to E. E cannot be inferred in a forward-
directed manner from events other than the joint occurrences of A and B.
The application of the abductive inference rule is thus straightforward:
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ANB

P
E E
ANB

This inference satisfies Condition (A2). Note that this condition does not
require us to consider the (forward-directed) subproof from B A A to E if we
already considered the one from A A B to E. For, obviously, the assumption
of the former is logically equivalent to the assumption of the latter.

Does our abductive inference rule lead to problems in causal scenarios
of indirect causation? Suppose A brings about B, which in turn brings

about E:

Figure 63: Causal chain

So there is a forward-directed subproof from A to B and one from B to E.
E cannot be inferred (in a forward-directed manner) from an event other
than B, and B cannot be inferred (in a forward-directed manner) from an
event other than A. We know that E occurs, but have no explicit knowledge
about the occurrences of other events. Of course, we want to infer B from
E by Abduction, and then A from B, again by Abduction. However, the
following application of the inference rule is not correct:

This inference violates condition (A2). For there is a (forward-directed)
subproof from A to E, and A is neither logically stronger than nor logically
equivalent to B. This subproof has not been considered in the present infer-
ence. Hence, we have to be content with the following abductive inference:
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A B

F F

E E E
AVB

This type of problem, however, has already been taken care of by the infer-
ence rules of classical logic. Note that we can infer, by classical logic, B from
A and the law saying that event B follows event A. Trivially, we can infer
B from B. Reasoning by cases—also referred to as Disjunction Elimination—
therefore allows us to infer B from A V B. Then we can infer A from B by
Abduction. Thus we have inferred both A and B from E, as it should be.

Two objections are worth considering. Obviously, conditions (A1) to (A3)
are crucial to understanding and applying the proposed abductive infer-
ence rule. These conditions are presented in a semi-formal fashion. It is an
explanation additional to the purely formal presentation of the abductive
inference rule. This should not be considered a problem. Note that even
some natural deduction inference rules of classical logic rest on additional
explanations, which are not fully formalized. A case in point are explana-
tions as two which constants can be used in a subproof when applying the
inference rule Existential Elimination. Some rules determining the proper
use of a calculus always escape complete formalization. This is an impor-
tant lesson from Wittgenstein’s Philosophical Investigations (1953).

Another objection may target the fact that conditions (A1) to (A3) rest on
propositions about derivability in classical logic. Admittedly, this is not
desirable since it makes the envisioned system of abductive reasoning im-
pure. The system is not only built on top of the inference rules of classical
logic, but does also rest on metalogical propositions concerning derivabil-
ity in classical logic. However, the increased expressive power of abductive
reasoning comes at a price. Certain nonmonotonic logics have inference
rules whose conditions of application rest on propositions about derivabil-
ity and entailment in classical logic as well. A case in point is Reiter’s de-
fault logic (see Antoniou (1997, Part III)). Likewise, our account of default
reasoning in the previous chapter is based on some metalogical concepts of
classical logic. Specifically, we need the concepts of consistency and entail-
ment in classical logic for this account.

We are now in a position to define an inference relation of abductive rea-
soning on top of classical logic:
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Definition 19. I' -, ¢

Let ¢ be a natural deduction system of classical first-order logic. Let I' be
a set of first-order sentences and let ¢ be such a sentence. We say that ¢ is
inferable from I' by abductive reasoning—and write I' -, ¢—if and only if
there is a natural deduction derivation of ¢ from I" using the inference rules
of -¢; and the inference rule Abduction.

We must wonder whether this inference system of abductive reasoning
constitutes a proper logic. Well, it depends on our conception of logic in
general. Some people think that the notion of logic should be reserved
for systems which come with a fully-fledged and recursive proof theory,
and a model-theoretic semantics. On this narrow conception of logic, most
nonmonotonic logics do not count as a proper logic. But more liberal con-
ceptions of logic are entertained as well, according to which any inference
system constitutes a logic. In essence, an inference relation maps sets of
sentences to sets of sentences such that this mapping is guided by some
idea of truth preservation: if all members of a given set of premises are true,
then all sentences inferable from this set must be true as well. Moreover,
there are inference relations which are guided by a weaker requirement: if
all members of a given set of premises are believed, then it is rational to be-
lieve a certain set of conclusions. Nonmonotonic logics and formal theories
of belief revision define inference relations in this sense. What matters for
our investigation is that the inference relation -, is well defined. We will
investigate general logical properties of this relation elsewhere.

4 Abductively Redundant Laws

We studied abductive reasoning in order to capture inferences from the
spurious cause to the common cause. The motivation for this is to show
that correlations between spurious causes and their effects are redundant
in the set of generalizations about the respective causal scenario relative to
a system of abductive reasoning. We now want to show that this strategy
has been successful. Let us first further specify our notions of redundancy
and non-redundancy:

Definition 20. Abductive Redundancy
A sentence ¢ is abductively redundant in a set I" of sentences iff ¢ € I' and

T\ {¢} Fa ¢



CHAPTER 8. SPURIOUS CAUSATION 180

Definition 21. Abductive Non-redundancy
A sentence ¢ is abductively non-redundant in a set I' of sentences iff ¢ € T

and I'\ {¢} 4 ¢-

These definitions give rise to the notion of deduction which is based on
laws which are abductively non-redundant:

Definition 22. 'y ¢

Let I be a set of first-order sentences and ¢ be such a sentence. We say there
is a deduction of ¢ from I based on non-redundant laws —in symbols I" -y
¢—iff there is a deduction of ¢ from I such that any sentence ¢ used to
justify an inferential step has the following property: if ¢ is an implication
or a universal sentence, ¥ is abductively non-redundant in T".

Unless otherwise specified, we henceforth understand the notion of non-
redundancy in the sense of abductive non-redundancy. The next step is
to show, for various examples, that there is no forward-directed inferential
path from the spurious cause to its effect such that only non-redundant
laws are used. Moreover, we need to show that there is such a path from
the common cause to its effects. Once this has been shown, we are able to
further refine our inferential analysis of causation.

5 Common Causes in Conjunctive Scenarios

Let us begin with the example of freezing water, and introduce some sym-
bolic notation to study this scenario:

¢ W: there is a reservoir of liquid water.

* B: the air temperature drops below zero degrees Celsius.

T: there is a thermometer.

F: the water in the reservoir starts to freeze.

L: the thermometer indicates an air temperature of less than zero de-
grees Celsius.
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The events of the scenario are governed by two laws:

WAB—F (A1)
BAT — L. (A2)

The first law, roughly, says that water starts freezing if the air temperature
drops below zero degrees Celsius. The second law says that a thermometer
indicates an air temperature of less than zero degrees Celsius if the air tem-
perature actually falls below zero degrees Celsius. The implications may
be read as shorthand notations for universal sentences. Some assumptions
remain implicit, as already indicated in Section 1. We assume, for example,
that the thermometer measures the temperature of the air to which the wa-
ter reservoir is exposed to. It's a simple and idealized model of two related
processes: freezing of water and a change of the thermometer reading. For
simplicity we leave out the underlying physics, which centres on the ki-
netic theory of heat and the theory of thermodynamic equilibrium. The
causal graph of Figure 64 seems a fair representation of our causal verdicts:

@\@

&

@
Figure 64: Freezing of water

The drop of temperature is a common cause of two different effects: the
freezing of water and the fall of the thermometer reading. It is a common
cause, which is embedded in two different conjunctive causal scenarios.
Since a thermometer reacts to a fall of temperature before a medium-sized
reservoir of water starts to freeze, event L precedes event F. Now, what
about the following law?

LAW — F. (A3)
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If a thermometer indicates an air temperature of less than zero degrees Cel-
sius and a reservoir of liquid water is present, then this water starts to
freeze. Ceteris paribus, this law holds true of the causal scenario in ques-
tion inasmuch as the other two laws do. Also, the Humean convention is
satisfied. However, we do not think that A3 represents a causal relation. A
thermometer reading is not a cause for water to freeze.

Our unificationist proposal helps draw the distinction between causal and
non-causal laws. We can show that A3 is abductively redundant in the set
{A1, A2, A3}. For this to be seen, start a subproof from L A W. This gives us
L. Since L can be inferred from B A T deductively and in a forward-directed
manner, we can infer B A T from L by our inference rule Abduction. BA T
gives us B by classical logic. Further, Band L A W imply W A B by classical
logic. Using A1 we can infer F from W A B by classical logic. This completes
the subproof from L A W to F. By Implication Introduction, this subproof
lets us infer LAW — F.

Of course, we also need to show that A1 and A, are not abductively redun-
dant in the set {A1, A2, A3}. Suppose, for contradiction, A; is abductively
redundant in the set {A1, A2, A3}. Then there is a subproof from W A B to
F, in which abductive and classical inferences are admitted, and A, and A3
are given as premises in the superordinate proof. It is easy to show that F
is not a classical logical consequence of the set {W A B, Ay, As}. Hence, F
cannot be derived by classical logic in the subproof from W A B. Abductive
inferences are therefore needed to infer L from W A B. To use A, or A3 in
an abductive inference, we must infer L or F from {W A B, A2, A3} by clas-
sical logic. However, neither L nor F is a classical logical consequence of
the set {W A B, A, A3}. Hence, neither L nor F can be derived from the set
{W A B, Ay, A3} by classical logic. Thus we have obtained a contradiction.
Analogously, we can show that A, is not abductively redundant in the set

{Al/ AZ/ )\3}

Note that our result about the freezing of water has some general signifi-
cance. As observed above, the common cause is embedded in two different
conjunctive scenarios. First, the presence of liquid water and temperatures
below zero degrees are conjunctive causes for water to freeze. Second, the
presence of a thermometer and temperatures below zero degrees are con-
junctive causes of temperature measurements below zero degrees. It is fur-
thermore obvious that the above logical demonstration does not depend
on the specific meaning of the propositional variables W, B, T, L, and F.
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Hence, we have shown that our proposed solution to the problem of spu-
rious causation works for all causal scenarios where a common cause is
embedded in two different conjunctive causal scenarios.

At the same time, we have to observe that our proposal fails to work for
very simple accounts of common causes. Consider the following account
of freezing water:

B—F (A
B—L (A3)
L —F. (A%)

Figure 65: Freezing of water simplified

We take the law L — F to represent a spurious causal relation. However,
each of the implications A}, A}, and A} is abductively redundant in the set
{A], A}, AL}, This poses the question of which representation of the causal
scenario we should choose. The implication W A B — F strikes us as more
accurate than the implication B — F. The latter implication is obviously
not correct if the temperature is well below zero degrees, but no water
is present. Such conditions obtain at night in certain deserts. We should
therefore interpret the natural language conditional ‘whenever the temper-
ature is below zero degrees Celsius, then water starts to freeze’ as short for
the conditional ‘whenever the temperature is below zero degrees Celsius
and there is a reservoir of liquid water, then this reservoir starts to freeze’.
We can therefore justify our choice of the conjunctive model over the non-
conjunctive one by pointing out that the statements of the former are more
accurate than those of the latter.
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6 Independence of Causes

Notice that all causes of the above common cause scenario are indepen-
dent of one another. The presence of a thermometer is independent of the
air temperature. Likewise, the presence of a reservoir of liquid water is
independent of whether or not there is a thermometer nearby. There is
some negative correlation between the air temperature being below freez-
ing point and the presence of a reservoir of liquid water. This correlation,
however, is not deterministic at all. For it takes some time until a reservoir
of liquid water turns to ice completely. In most geographical regions, lakes
never freeze all the way down to the bottom, even during longer periods
of very low temperatures.

The last observation is important for the following reason. If said causes
were not independent of one another, our approach to spurious causation
would fail for the scenario in question and similar ones. Suppose we have
a common cause which is embedded in the two conjunctive scenarios, as
described in the above section. Further, let us suppose that the causes of
each conjunctive scenario have a common cause. Applied to the above
scenario of freezing water: W and B have a common cause C;. B and T have
a common cause C;. Moreover, let us suppose C; and C, have a common
cause Cp. The causes W, B, and T are thus interdependent, and connected
by common causes:

5 Y w
/ \
\@/

Figure 66: Interdependence of causes in a common cause scenario



CHAPTER 8. SPURIOUS CAUSATION 185

The additional causal connections give rise to the following implications:

C() — C1 A Cz ()\4)
C, - BAT (As)
Ci - WAB. (Ae)

It can then be shown that A4, A», and A3 are abductively redundant in the
set {A1,...,A¢}. This is a problem since A; and A, are presumed to be
genuinely causal regularities, while A3 is thought of as a mere spurious
one. Put differently, we cannot distinguish between genuine and spuri-
ous causes anymore using the criterion of abductive non-redundancy. Of
course, this consideration is just hypothetical. As a matter of fact, there are
no deterministic correlations among the causes W, B, and T. Hence, our
approach to spurious causation works for the present scenario and similar
ones.

These considerations have interesting connections to Hausman’s (1998) in-
dependence theory of causation. On this theory, the core of both proba-
bilistic and deterministic causation is as follows: any effect has at least two
causes, and these causes are causally independent in the sense of not hav-
ing a common cause. Hausman has shown for counterfactual and interven-
tionist approaches to causation that they tacitly rely on this independence
principle. We are happy to point out that our theory of causation relies on
this principle too—at least in common cause scenarios. If the principle did
not hold in such scenarios, our approach to spurious causation would fail
to work. Validity of the principle is understood with respect to our concrete
causal judgements.

7 Common Causes in Disjunctive Scenarios

Suppose a common cause is part of two disjunctive scenarios. Let us repre-
sent such a scenario by simple implication laws at an abstract level:

AVC —E (A1)
CVB—D. (A7)
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Figure 67: Common cause embedded in two disjunctive scenarios

Further, suppose the antecedent events of these implications precede the
respective event of the consequent. By this assumption we can apply the
Humean convention, and interpret these laws causally. Let us also assume
that there are no events other than C and B which are regularly connected
with D. D precedes E. In such a scenario, the following implication holds
true as well:

DA-B — E. (A3)

A causal interpretation of this law seems counterintuitive, even though it
satisfies the Humean convention. For example, when we interpret Fig-
ure 67 as neuron diagram, we do not think that activation of D and non-
activation of B jointly cause the activation of E. Mackie (1980, p.81-4) in-
terprets a famous example of spurious causation by Russell (1921/2009,
p-289) along the lines of two interrelated disjunctive scenarios. We will
discuss this example below, but remain at the abstract level for the logical
analysis to follow.

We show that our proposal for the demarcation between spurious and gen-
uine causes works well for the present causal scenario. The spurious causal
relation D A =B — E is abductively redundant in the set {A1, A2, A3}. For
this to be seen, start a subproof from D A =B. This gives us D by classi-
cal logic. By Abduction, we obtain C V B from D. D A =B gives us =B by
classical logic. From B V C and —B we infer C. Using A;, we infer E from
C. We have thus derived E from the assumption D A —~B. By Implication
Introduction, we infer D A =B — E.

The genuine causal relation A V C — E, by contrast, is not abductively re-
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dundantin the set {A1, Ay, A3}. If we start a subproof from A V C, we cannot
derive E, even if A; and A3 are given as premises and abductive inferences
are admitted. Suppose, for contradiction, we can infer E from AV C in a
subproof. It is easy to show that E is not a classical logical consequence of
the set {A V C, A2, A3}. Hence, abductive inferences are needed to derive
E from AV C in the subproof. To use A, or A3 for such an inference, E or
D must be derived from {A V C, Ay, A3} by classical logic. However, it is
easy to show that neither E nor D is a classical logical consequence of the
set {AV C, Az, A3}. Hence, neither E nor D can be derived from the set
{AV C, Ay, A3} by classical logic. Thus we have obtained a contradiction.

In a manner analogous to this demonstration, we can show that the gen-
uine causal relation C V B — D is not abductively redundant in the set
{A1,A2,A3}. Our proposal for demarcating the distinction between gen-
uine and mere spurious causes thus succeeds: there are forward-directed
inferential paths from A and C to E—as well as from B and C to D—such
that all laws used in the path are non-redundant. But there is no such path
from the spurious cause E A = A to D. This is as it should be, provided we
agree that A, B, and C are genuine causes, while E A —A is a mere spurious
cause.

It is worth looking at a concrete example of interrelated disjunctive causes.
Imagine two factories where the end of the shift is signalled by hooters.
Suppose the knocking-off time at the two factories is five o’clock. One fac-
tory is in Manchester, the other in London. Then the sounding of factory
hooters in Manchester is regularly followed by London workers leaving
their work. And yet we do not consider the former event a genuine cause
of the latter. This is a famous example of spurious causation due to Russell
(1921/2009, p.289). Mackie (1980, pp.81-4) interprets the example along
the lines of two interrelated disjunctive scenarios. Drawing on this inter-
pretation, we suggest the following formal account:

F: It is five o’clock according to Greenwich time.

Ty (T1) : the hooters at the Manchester (London) factory are tested.

Hy (Hp): the hooters at the Manchester (London) factory sound.

Ly (Lp): The Manchester (London) workers leave their work.
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The causal scenario is governed by the following laws:

TV E — Hy (A1)
T, VF — Hy (A2)
Hu AF — Ly (A3)
H AF — L. (Ag)

On this account of the causal scenario, the event that it is five o’clock and
the sounding of hooters at the Manchester factory are causes of the work-
ers to leave their work at the Manchester factory shortly after five o’clock.
Likewise for the workers at the London factory. For these causal relations,
we have an inferential connection between cause and effect, and the cause
precede its effect. However, the following law seems to hold true as well:

—|TM/\HM — LL. (A5)

In words, whenever the hooters at the Manchester factory sound without
being tested, the workers at the London factory leave their work. Again,
we can show that there is an asymmetry between the laws Ay, ..., A4 on the
one hand, and A5 on the other. These laws are not on a par with one another.
As is abductively redundant in the set {A4,..., A5}, whilenone of Ay, ..., A4
is abductively redundant in this set. This can be shown in a manner anal-
ogous to the above demonstration in this section. Hence, our strategy to
demarcate between spurious and genuine causes succeeds again. There is
no inferential path from the sounding of hooters at the Manchester factory
to the London workers leaving their work such that the path is forward-
directed and all laws are non-redundant.

One objection to our formal account of the causal scenario is worth consid-
ering. One may well argue that hooters at the Manchester factory are not
tested so often, so when they sound, it is almost always five o’clock. Hence,

Hy — Lp (A6)

is a pretty good ceteris paribus law. Other things being equal, the London
workers leave their work when the Manchester hooters sound. And this
law is not abductively redundant in the set {A1,...,A4,Ag}. We reply to
this objection by admitting that ceteris paribus laws are perfectly fine and
acceptable for modelling deterministic causal relations. At the same time,
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we are free to prefer the more accurate model in case two different mod-
els of a scenario yield different causal verdicts, while one model is more
accurate than the other. Accuracy is in this part of our investigation un-
derstood with respect to the non-causal claims of the respective models.
The sets {A1,...,A4} and {Ay,..., A5} have fewer exceptions than the set
{M,..., A4, A6}. Hence, we have reason to prefer the former sets over the
latter as an account of the causal scenario.

Notice, furthermore, that our formal description of the scenario may be re-
fined in several ways. For example, it would be more accurate to represent
the event that it is five o’clock as a conjunctive factor among other conjunc-
tive factors which together cause the hooters to sound. In addition to the
event that it is five o’clock, there needs to be an agreement between work-
ers and the owner of the respective factory that knocking-off time is five
o’clock. Also, electrical power needs to be available at five o’clock for the
hooters to sound. And so on. Going more fine-grained in this way allows
us to even better distinguish genuine from spurious causes.

8 Conjunctive and Disjunctive Scenarios Combined

Finally, we must wonder if our approach to spurious causation works for
common causes embedded in a combination of a conjunctive with a dis-
junctive scenario. We can describe such a scenario at the abstract level as
follows:

ANC = E (A1)
CVB—D. (A2)
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Figure 68: Combination of a disjunctive with a conjunctive scenario

If E precedes D, the following implication stands for a spurious causal re-
lation:
E—D. (A3)

If, by contrast, D precedes E, the following implication may be considered
a spurious causal relation:

AANDA—-B — E. (As)

Fortunately, all goes well. We can show that A3 is abductively redundant
in the set {A1, A2, A3}, while A; and A, are not. Likewise, A4 is abductively
redundant in the set {A1, Ay, A4}, while Ay and A, are not. Finally, A3 and
A4 are abductively redundant in the set {A1, A2, A3, A4}, while A; and A; are
not.

We can prove these results using the pattern of the above proofs for com-
mon causes embedded in purely conjunctive and purely disjunctive sce-
narios. Hence, there is no forward-directed inferential path from the spu-
rious cause to its effect such that all laws of this path are not abductively
redundant. There is an inferential path from the spurious cause to its ef-
fect, which however uses an abductively redundant law. Our analysis thus
properly discriminates between genuine and spurious causes in the present
scenario.
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9 Lightning

Why are we hesitant to call the flash in the sky a cause of the thunder? We
think that the flash in an event of lightning and the thunder have a common
cause: an electrostatic discharge through the atmosphere between a cloud
and the ground. Since light travels faster than sound, we see the flash first,
and then we hear the thunder. That is, the spurious cause precedes its
effect, and a simple Humean solution to the problem is not available. How
does our approach to spurious causation fare with this scenario?

First, we must wonder if there are further causal factors in play that form
a conjunctive or disjunctive scenario together with the common cause. If
so, the above results about common causes in conjunctive and disjunctive
scenarios apply to the electrostatic discharge in lightning. It seems as if
there are such factors. To put it more carefully, we can describe an event
of lightning such that further causal factors are revealed. The flash in the
sky is an optical phenomenon which occurs to an observer only if the sky is
visible to her or him. If I am sitting in my apartment with the screens of all
the windows closed, I will not see any flash at sky, despite the electrostatic
discharge between the cloud and the ground. Or, when I am surrounded
by sky scrapers, only a tiny fraction of the sky is visible to me so that a flash
may escape my noticing. Similar considerations apply to the thunder. If I
am sitting in a room with soundproof walls, such as a studio for producing
music, I will not hear the thunder.

One may object to this description that it puts too much emphasis on the
direct observation of flash and thunder. We should rather describe the flash
in terms of certain electromagnetic waves and the thunder in terms of cer-
tain acoustic waves. However, even the propagation of electromagnetic
waves depends on certain conditions. Once such waves originate from the
area where electricity flows from the cloud to the ground, they will reach a
certain spatiotemporal location in the vicinity of the discharge only if this
location is not screened off by an opaque object, such as a building or a wall.
Likewise, acoustic waves reach such a location only if they have a medium
to travel. Sound waves are not able to reach, for example, an area of arti-
ficially produced vacuum. We see that the presence of air is a conjunctive
factor for the presence of certain sound waves originating from the area
of the discharge. And the absence of opaque objects is a conjunctive fac-
tor for the presence of certain electromagnetic waves originating from the
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discharge.

However, we can also describe the effects of lightning in a manner that
no conjunctive factors are needed. Whenever there is an electrostatic dis-
charge between a cloud and the ground, then there are always spatiotem-
poral regions where the electromagnetic waves—emitted by the channel
of the electric current—can freely travel. So it holds extensionally univer-
sally true that, whenever electromagnetic waves of a specific wave length
and intensity are emitted, then certain acoustic waves are emitted from the
same source. Even on the ground, we always find spatiotemporal locations
where both the flash of a lightning can be seen and the thunder be heard. In
this description, the common cause is not embedded in any conjunctive or
disjunctive scenario. Our abstract solution to the problem of spurious cau-
sation fails to apply then. Let us therefore take a closer look at the physics
of lightning, and see if our analysis of spurious causation can be shown to
succeed independently of an embedding of the common cause in conjunc-
tive or disjunctive scenarios.

To explain and to describe lightning at a more fundamental and detailed
level of physics is far from trivial.

Despite being one of the most familiar and widely recognized
natural phenomena, lightning remains relatively poorly under-
stood. ... The study of lightning and related phenomena in-
volves the synthesis of many branches of physics, from atmo-
spheric physics to plasma physics to quantum electrodynam-
ics, and provides a plethora of challenging unsolved problems.
(Dwyer and Uman 2014, p. 147)

And yet, we should try to say more about lightning in order to further
confirm our account of spurious causation. Many of the unsolved prob-
lems concern the conditions under which an electric current can flow to the
ground in the first place. They concern details of the development of such
a current. Once we assume that electric current—of a certain magnitude—
flows from a cloud to the ground, the physics of lightning is relatively well
understood. This electric current is the common cause of flash and thun-
der.?

“The following description of lightning is mainly based on Rakov and Uman (2003), and
Dwyer and Uman (2014), which are also recommended for further reference.
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Notably, we cannot see or hear the electric current. Neither the flash nor
the thunder is directly caused by the electric current. The flow of electric
current rather leads to a sudden and extreme rise of temperature in those
regions of the air where electricity is conducted. The channels conducing
electricity reach temperatures of around 30,000 Kelvin. Why does the elec-
tric current heat up the air? Electrons moving toward the ground collide
with ions and molecules of the air. These collisions transmit kinetic energy
to the ions and molecules. According to the kinetic theory of heat, kinetic
energy amounts to thermal energy so that the temperature rises where elec-
trons flow in a specific direction.

The flash and the thunder are then caused by an extreme rise of tempera-
ture in the channels of the air that conduct electricity. What we see at the
sky are these channels. Two processes are responsible for the emission of
visible light. First, black-body radiation. Any macroscopic physical object
emits electromagnetic waves whose frequency depends on its temperature.
If the temperature is above a certain threshold, we can see the radiation. To
put it more technically, the emitted frequency is within the visible spectrum
of electromagnetic waves.

The other process which makes the electricity conducing channels visible
are excitations of gas molecules. Kinetic energy of such molecules is trans-
formed to excitations of outer electrons, that is, electrons move to higher
energy levels. When these electrons drop back to their initial energy state,
photons of light are emitted. The frequencies of light emitted through this
process depend on the atomic properties of the respective gas. More gener-
ally, chemical elements have specific frequencies of light emission. Since a
great deal of the atmosphere consists of nitrogen, the frequencies observed
for a flash in the sky are largely due to excitations of nitrogen atoms.

Why do we hear a thunder when an electric current of about 30,000 Ampere
flows to the ground? As with the flash, it is the extreme rise of tempera-
ture that accounts for the thunder. The kinetic theory of heat tells us that
temperature translates to kinetic energy of the molecules and atoms. When
the temperature of the electricity conducing channels suddenly rises, the
accelerated motion of gas molecules creates a shock wave that we hear as
thunder. Put more technically, the accelerated motion leads to a sudden in-
crease of pressure within the channels where electricity flows. This sudden
increase of air pressure creates an acoustic wave.
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The propagation of acoustic waves is quite well understood, and follows
equations analogous to those governing the propagation of electromagnetic
waves. Recall that it is electromagnetic waves in terms of which physicists
describe optical phenomena visible to us. The propagation of light can be
accounted for by the equations of electrodynamics.

Now that we know a bit more about the physics of lightning, let us resume
our discussion of spurious causation. We need to show that there is no
forward-directed inferential path from the flash in the sky to the thunder
such that the laws of this path are not abductively redundant. To make
the problem harder and more interesting, let us assume that there are no
obstacles to the propagation of acoustic and electromagnetic waves other
than the Earth itself.

If we consider some of the physical theories underlying the phenomenon of
lightning, it seems impossible to devise a formal proof that the implication
between flash and thunder is abductively redundant, while the other laws
are not. The available accounts of the physics of lightning are far away
from the deductive nomological ideal, according to which we can derive
the development of a physical system over time starting from boundary
conditions and universal laws as premises (see Rakov and Uman (2003),
and Dwyer and Uman (2014)). It is only certain idealized systems, such
as a single nitrogen atom, for which our theoretical accounts conform to
the formal deductive picture. The accounts of lightning in physics combine
theoretical results about such idealized systems with experimental findings
about actual lightnings and coarse-grained descriptions of various physical
systems, such as the atmosphere.

And yet, when studying the accounts of lightning in physics, we can rec-
ognize inferential paths among the various events involved. At the core of
lightning is the event of an electrostatic discharge through the atmosphere
between a cloud and the ground. Hence, there is an electric current flowing
from the cloud to the ground. The electrons making up this current collide
with the molecules of the air so that these molecules gain kinetic and ther-
mal energy. By our theories of ideal and real gases, the rise of temperature
leads to increased pressure. Also, atomic theory tells us that kinetic en-
ergy of atoms and molecules gets transformed into excitations of electrons.
Furthermore, we know by the laws of atomic theory that electromagnetic
radiation is emitted when excited electrons drop back to their initial energy
state. And so on.
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We can thus recognize a sequence of events such that each element in the
sequence results from its predecessor (if there is one), and the inferential
connection between the two events is backed up by laws of well established
physical theories. No element in the sequence is temporally later than its
successor. At least some elements are temporally later than their predeces-
sor. Hence, we can say that there is a forward-directed inferential path from
the electrostatic discharge to the emission of bright light, and one from the
discharge to the shock waves creating thunder. These paths make essential
use of laws from well established physical theories, including most promi-
nently electrodynamics, acoustics, atomic physics, and thermodynamics.
They also use general descriptions of the macroscopic physical systems in-
volved, in particular the Earth’s atmosphere.

Now, our central claim is that none of the laws used to infer the bright flash
in the sky from the discharge becomes abductively redundant if we add
to the set of these laws the implication that thunder follows the flash in
the sky. There is no way, for example, to infer any law of atomic theory
from the implication between flash and thunder, even if other laws of well
established physical theories remain available as premises. Similar consid-
erations apply to the inferential path from the discharge to thunder. By con-
trast, the implication between flash and thunder can be inferred by abduc-
tive and deductive reasoning. For this to be seen, suppose we see a bright
flash in the sky. In view of our physical theories and our knowledge in
geophysics, there is only one type of forward-directed inferential path that
concludes with the event of such an observation. This path starts with the
assumption of an electrostatic discharge through the atmosphere between
a cloud and the ground. There is no other type of event from which we
could infer the observation of a bright flash in the sky, set aside events that
precede or proceed the occurrence of such a flash. Hence, by Abduction,
there occurred an electrostatic discharge between a cloud to the ground. By
Implication Introduction of classical logic and the deductive inference from
the electrostatic discharge to the propagation of an acoustic shock wave, we
can infer the implication that, when a bright flash occurs at the sky, thunder
will occur as well.
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10 Trivial Spurious Causes

Day regularly follows night, but night is not considered a cause of day (Mill
1843/2011, Book 111, § 6). Low tides are followed by high tides, without the
former being seen as a cause of the latter. Life is followed by death, and
yet we do not think that life causes death. In all of these examples, we can
infer an event from another in a forward-directed manner, and the inferred
event occurs later than the event from which the inference started. But
it seems wrong to say that there is a causal connection between the two
events. What is wrong?

We must wonder whether there are common causes in the background. If
so, we could try to subsume the present examples under the above analysis
of spurious causation. However, the structure of inferential paths seems to
differ from that of the common cause scenarios in the previous section. We
know that the cycle of night and day is caused by rotation of the Earth and
emission of light by the Sun. But there is a difference between causing the
cycle of night and day, and causing a specific event of it’s being day at a
certain time and place. We cannot infer the event of it’s being day at a
specific time and place from the statement that the Earth is rotating and the
Sun is emitting light. Nor can we infer an event of high tides from the fact
that the Moon is orbiting around the Earth.

Suppose there is daylight at a specific time t and place p on the Earth. We
then have two competing causal explanations. One says that the daylight
is caused by the preceding night. The other says that the daylight is caused
by the Sun emitting light, and there being no light-absorbing obstacles be-
tween the Sun and place p at time ¢ other than the atmosphere. Obviously,
the latter explanation in terms of sunlight is by far more convincing and
appealing. Why so?

Again, unificationist ideas help us clarify things. We have a theory about
our planetary system which allows us to explain a number of different phe-
nomena: the cycle of day and night, the daily cycle of different angles of sun
rays, the cycle of seasons, polar night and polar day, the presence of Coriolis
forces on the surface of the Earth, eclipses of the Moon and the Sun, and so
on. This theory says that the Sun is at rest, and planets are orbiting around
the Sun. Most notably, the Earth itself is rotating, and the angle between
the axis of rotation and the orbit of the Earth around the Sun is around 23.5
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degrees. The Sun emits electromagnetic radiation in the visible spectrum.
This theory of our planetary system comes in different degrees of precision.
We have different formulations, which vary with respect to their degree of
detail and quantitative information. For the discussion to follow it does not
matter if we view the theory as a single theory or a family of theories.

Clearly, the causal explanation of daylight in terms of sunlight proceeds
from premises which have a lot of unificatory power. As just emphasized,
we can infer from the theory of our planetary system a number of different
phenomena. By contrast, very little can be inferred from the generalization
that day follows night. Most notably, this generalization can be inferred
from the theory about our planetary system. It is therefore deductively
redundant relative to some syntactic formulation of this theory. Suppose T
is some syntactic formulation of the theory of our planetary system. Let A
be the law, or generalization, that day follows night. Then A is deductively
redundant in the set TU {A}.

It seems as if our approach to spurious causation continues to work for the
present example: C is a mere spurious cause of E iff there is a forward-
directed inferential path from C to E, C precedes E, but the inferential path
contains some redundant law. Put differently, there is no forward-directed
inferential path from the spurious cause to its effect such that all laws of this
path are non-redundant. Only genuine causes have forward-directed infer-
ential paths to their effects such that all laws of the path are non-redundant.
The inference from night to daylight is forward-directed, but rests on a re-
dundant generalization. Hence, night is a spurious cause of daylight.

However, there remains to consider a subtle objection to our analysis of
trivial spurious causes. Certainly, we cannot infer—by deductive classical
reasoning—any element of the theory of our planetary system from the
generalization that day follows night. Nor can we infer abductively any
such element from the latter generalization alone. However, it seems as if
we can abductively infer that the Earth is rotating from the generalization
that day follows night and certain other parts of the theory of our planetary
system. Suppose we know that it is day at a specific place p whenever this
place is exposed to sunlight. By contrast, it is night at p whenever p is in the
shadow of the Earth with respect to sunlight. Further, we know or assume
that the Sun is at rest. Also, we know that it takes the Earth a year to do
a complete orbit around the Sun. This information excludes that the cycle
of night and day can be inferred from the motion of the Earth around the
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Sun, given that the length of night and day is less than 24 hours (at least in
geographical regions between the polar circles). Then there is a forward-
directed inferential path from the premise that the Earth is rotating to the
observation that day follows night. Given our background knowledge, the
rotation of the Earth is the only explanation of the cycle of night and day. By
Abduction, we infer that the Earth is rotating around its own axis. Hence,
there is a member of T (the theory of our planetary system) which becomes
abductively redundant if we add A (the law that day follows night) to T.

Why is this result a problem? The rotation of the Earth is a genuine cause
of a number of different phenomena, among which the cycle of night and
day is just one. Even worse, the rotation of the Earth is used in genuine
causal explanations. A case in point is the dynamics of low-pressure area
systems, for which Coriolis forces are an important causal factor. Since we
think that causal inferential paths use only non-redundant laws, we do not
want to view the rotation of the Earth as a redundant law.

It may be tempting to solve the problem by arguing that the rotation of the
Earth is a fact rather than a law. After all, we can represent the claim in
question by a simple atomic sentence which says that the Earth is rotating.
But it is more correct to spell out the claim in question by a sentence which
says that, for any time t, the angular velocity of the Earth has a certain
constant value. Then the first-order translation of the latter formulation
has the form of a universal sentence. It therefore qualifies as law in the
sense of our minimalist and syntactic understanding of laws. Hence, we
better do not defend our explication of spurious causation by arguing that
the rotation of the Earth is not a law.

Here is a more promising strategy. After all, the generalization that day
follows night and the claim that the Earth is rotating are not on a par as re-
gards their inferential power. While the former is deductively redundant,
the latter is only abductively redundant—in the context of the theory of
our planetary system. Suppose p is the claim that the Earth is rotating with
a constant angular velocity. T is the theory of our planetary system. A is
the generalization that day follows night. Recall that p € T, while A ¢ T.
Then p is abductively redundant in the set T U {A}. By contrast, A is de-
ductively redundant in this set. This leads to the following observation. In
the present set of causal scenarios, the (forward-directed) inferential path
between the spurious cause and its effect uses deductively redundant laws.
The (forward-directed) inferential path between the genuine cause and its
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effect also uses redundant laws, but these laws are only abductively redun-
dant. By contrast, in common cause scenarios, only the forward-directed
inferential path between the spurious cause and its effect uses redundant
laws, and these laws are abductively redundant. The inferential paths be-
tween genuine causes and their effects are free of any redundant laws. In
the next section, we will generalize our approach to spurious causation
such that both types of causal scenarios are captured.

11 An Ordering of Unification

In the previous sections, we have studied a number of different scenarios
of spurious causation. There are subtle differences between these scenar-
ios, and so it proved difficult to capture all of them in a unified account.
Nonetheless, our results give rise to a general observation about the dis-
tinction between spurious and genuine causes: the forward-directed infer-
ential paths between genuine causes and their effects are based on laws
which are—in some sense—more unificatory than the laws used in the
forward-directed inferential paths between spurious causes and their ef-
fects. Unificatory power is understood in terms of inferential power. If a
law is redundant in the context of a theory, it has less inferential power than
the non-redundant members of this theory.

This inferential diagnosis of spurious causation worked particularly well
for scenarios with common causes. But even in the other cases, there seems
to be a difference in inferential power between the laws used to infer effects
from genuine causes compared to the laws used in the inferential paths
from the spurious cause. As emphasized above, we can infer from the ro-
tation of the Earth and suitable background theories a number of different
phenomena: the cycle of day and night, the daily cycle of different angles
of sun rays, the cycle of seasons, polar night and polar day, the presence of
Coriolis forces on the surface of the Earth. Such forces, in turn, are causal
factors in the dynamics of low-pressure systems and other meteorological
phenomena. These inferential explanations are usually presented in a de-
ductive fashion.

By contrast, if we start from the generalization that day follows night, we
cannot infer, for example, the presence of Coriolis forces by deductive rea-
soning alone. To infer such forces, we would have to first infer the rotation
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of the Earth from the generalization that day follows night by abductive
reasoning. Then we could go on to infer the presence of Coriolis forces on
the surface of the Earth by deductive reasoning. However, this combination
of abductive and deductive inferences is more complex than the deduction
of the law that day follows night from the rotation of the Earth. Such com-
binations are not considered explanatory. We do therefore not say that the
cycle of night and day inferentially explains the presence of Coriolis forces
on the surface of the Earth. The rotation of the Earth has more explanatory
inferential power than the claim that day follows night because the former
has simpler inferential connections to a variety of different phenomena.

In light of this observation, we suggest distinguishing degrees of redun-
dancy, depending on the logical means needed to show that a given sen-
tence is redundant. Suppose we have a set L of laws such that A,A, € L.
A1 is deductively redundant in L, while A, is abductively redundant. We
then say that A is redundant in L to a higher degree than A; is. This pro-
posal is motivated by the fact that A; can be recovered from L\ {A;} by
simpler types of inferences than A, from L\ {A,}. For deductive reasoning
is simpler than abductive reasoning, which is obvious from our account of
abductive reasoning in Section 3. We can therefore say that L\ {A;} is a
simpler representation of L than L\ {A,} is. When forced to choose be-
tween L\ {A1} and L\ {A2}, it is reasonable to go for the former set.

Another way of motivating degrees of redundancy is to emphasize that ab-
ductively redundant laws are more central to the inferential power of a the-
ory than deductively redundant ones. In our schematic example, L \ {A1}
and L\ {A;} are on a par with respect to abductive reasoning, but L \ {A;}
is deductively inferentially more powerful than L \ {A,}. Hence, A4 is eas-
ier to dispense with than A,. We therefore say that A; is redundant to a
higher degree in L than A, is. In brief, deductive redundancy is stronger
than abductive redundancy. The claim that day follows night is redundant
to a higher degree than the rotation of the Earth—in the theory of our plan-
etary system joined with the claim that day follows night.

Let us now merge the above analysis of spurious causation in common
cause scenarios with the present analysis of trivial causal relations. For this
tobe achieved, we define an ordering of unification among sets of sentences
which inferentially represent a given set L of laws. Cn(T') designates the
classical inferential closure of T, as is standard. Cn,(T'), by contrast, the
abductive inferential closure of I'.
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Definition 23. L’ >, L” (preliminary)
Suppose L' and L” are subsets of a set L of laws. L’ is a more unified account
of L than L”—in symbols: L' >, L"—iff

(1) |L'] < |L"|, while L € Cnq(L') and L € Cna(L"), or

) |L'| = |L"|,while L C Cn(L'), but L Z Cn(L").

This definition says that there are two ways in which a subset of a given set
L of laws may be more unified than another. First, L’ may contain fewer
members than L”, while all sentences of L are inferable from both L’ and
L", respectively. Second, while L’ and L” have the same cardinality, L is
contained in the deductive inferential closure of L/, but there are sentences
in L which cannot be inferred by deduction from L”. Then L’ is a simpler
account of L, even if L is contained in the abductive closure of both L’ and
L”. Condition (1) helps us distinguish genuine from spurious causes in
common cause scenarios. It also works for the lightning scenario. Condi-
tion (2) allows us to draw the distinction in scenarios with trivial causal
relations. Note that >, is a binary relation defined for the set of subsets of
a given set of laws.

Suppose different types of redundancy are in play when considering a
given set L of laws. That is, L contains redundant laws in the sense of
condition (1) and ones which are redundant in the sense of condition (2).
Then the above definition cannot be applied directly. However, we can cap-
ture different types of unification by considering partitions of a given set L
of laws: L’ is a more unified account of L than L” iff there is a partition of
L such that it holds for any member of this partition that the intersection
with L' is more unified—in the sense of Definition 23—than the intersection
with L”, while there is no partition for which the reverse claim holds. For
simplicity, we leave partitions implicit in what follows.

The alert reader will have noticed another problem with our proposal for
defining an order of unification: we implicitly assume that different explicit
beliefs are not lumped together by conjunction. To give a simple example,
suppose L contains n different implications, where n > 1. Further suppose
that A € L; is deductively redundant in L;. Now, let L, be the singleton
which contains the conjunction of the implications in L. Obviously, our
definition of >, gives the intended result for L, but not for L,.
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This problem may be addressed by comparing the syntactic size of different
sets of sentences instead of their cardinality.’ The syntactic size of a given
sentence may be determined by the cardinality of the set of atomic subfor-
mulas. The syntactic size of a set of sentences is then simply given by the
arithmetic sum of the syntactic size of each member. In more formal terms,
let A(¢) be the set of atomic subformulas of a given sentence ¢. Then we
define the syntactic size S(L) of a set L of sentences as follows:

S(L) =) _lA(¢)l-

peL

Comparing sets of sentences with respect to their syntactic size results in
the following order of unification:

Definition 24. L' >, L”
Let L be a set of laws. Let L' be a set of laws such that any atomic sub-
formula of a sentence in L’ is also an atomic subformula of a sentence in

L. Likewise for L”. L' is a more unified account of L than L”—in symbols:
L, >u LI,_iff

(1) S(L") < S(L"), while L C Cny(L") and L C Cnq(L"), or
(2) S(L") = S(L"), while L C Cn(L"),but L £ Cn(L").

This is our final analysis of unification, which will be adopted to define the
notions of redundancy and non-redundancy. Notice that >, is a strict par-
tial order on the set of laws which are composed of the atomic subformulas
of the sentences in L.°

Given an ordering of unification thus defined, we can say what it is for
a set of laws to be maximally unified: the maximum of the ordering >,
defines the set of maximally unified accounts of L. That is, L’ is a maximally
unified account of L iff there is no L” such that L” >, L’. For simple causal
scenarios, the maximum of >, is often a singleton. But the maximum of
an ordering may contain more than one member. The maximum of >, is
always well defined since we assume that the set of explicit beliefs of an
epistemic state is finite.

SFriedman (1974) was well aware of this problem. Consequently, he measured unifica-
tion not in terms of the cardinality of sets of sentences. The suggested alternative measure
is based on the notion of a set of independently acceptable sentences.

®Recall that a strict partial order is a binary relation which is transitive and irreflexive.



CHAPTER 8. SPURIOUS CAUSATION 203

Comparing the number of subformulas of different sets of laws—rather
than the cardinality of the subsets of a given set L of laws—adds fur-
ther complexity. Fortunately, the problem concerning conjunctions of laws
hardly ever arises in practice for sets of explicit beliefs. It seems as if our ex-
plicit beliefs are governed by some principle of independent acceptability.
That is, it holds for most of our explicit beliefs that they are not logically
equivalent to a set of sentences such that each member of the set can be
accepted independently of any other member.

Notice that both the preliminary and the final explication of unification
solve another problem concerning the redundancy of laws. Suppose we
are in a scenario with a common cause which is embedded in two conjunc-
tive scenarios. We think the following two laws are non-redundant:

ANC > E (A1)
CAB—F. (A2)

Obviously, A and A, are deductively non-redundant in the set {A1,A;}.
Now, consider the following implication:

CAA—E. (A3)

One could argue that this sentence represents an explicit belief about the
causal scenario in question inasmuch as A1 does. The problem, then, is that
A1 and A3 are deductively redundant in the set L1 = {A1,A2,A3}. So, C
would not be a cause of E anymore since there is no forward-directed in-
ferential path from C to E such that all laws of the path are non-redundant.
However, A1 and A3 are a member of some maximally unified account of L,
even though there is no such account that contains both A; and A3. Hence,
there is a forward-directed inferential path between C and E such that all
laws of the path are in one and the same maximally unificatory account of
L. By contrast, the spurious causal law A A F — E is not a member of
any maximally unified account of L; U {A A F — E}. In this sense, itis a
redundant law.

12 Unification and Causation

It is time to put everything together, and to refine our Humean analysis of
causation so that it excludes spurious causes. Our inferential account of
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spurious causation may be summarized as follows: suppose C and E are
occurring events, and C precedes E. Then C is a spurious cause of E iff
there is a forward-directed inferential path from C to E, but any forward-
directed inferential path from C to E makes use of some redundant law. By
contrast, C is a genuine cause of E iff there is a forward-directed inferential
path from C to E such that any law of this path is non-redundant.

To explain the notion of redundancy of a law, we have defined the notion
of a maximally unified account of a set L of laws: L’ is a maximally unified
account of a set L of laws iff there is no L” such that L” is a more unified
account of L than L. This notion of maximal unification is based on an
ordering >, of unification, defined by Definition 24. Redundancy and non-
redundancy of a law can now be understood in terms of the membership
in a maximally unified account of laws.

Definition 25. Redundancy and Non-Redundancy

Let L be a set of laws explicitly believed in some epistemic state S. A law
A € L is redundant in L iff A is not a member of any maximally unified
account of L. By contrast, A € L is non-redundant in L iff it is a member in
at least one maximally unified account of L.

Let us now impose the requirement of non-redundancy on the inferential
path between cause and effect so as to exclude spurious causes. First, we
strengthen the conditional >>r as follows:

A>pnCe K(S) iff there is U(S - B(A) vV B(C)),A Fen C. (SRTEw)

Frn has its obvious meaning: I' Fry ¢ says that there is an inferential path
which is forward-directed and satisfies the condition that all laws of this
path are non-redundant in I'. [J(S =+ B(A) V B(C)) is the set of explicit
beliefs of the epistemic state S after suspension of judgement on A and C.

Second, we require that C >y E must hold for genuine causes C and their
effects E. This leads to the following analysis of causation:

Definition 26. Cause
Let C and E be events. C is a cause of E—relative to an epistemic state S—iff

(C1) C,E € K(S),
(C2) C>>py E € K- (S), and
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(C3) C precedes E.

This analysis of causation obviously draws on unificationist ideas about
explanation. In essence, the unificationist account says that ‘to explain is to
fit the phenomena into a unified picture insofar as we can’ (Kitcher 1989,
p-500). Both Friedman (1974) and Kitcher (1989) describe unification in
terms of derivations among sentences. They thus adhere to a broadly syn-
tactic understanding of scientific theories. Kitcher (1989, p.500) thinks that
unificationist explanations reveal the causal structure of the world even-
tually. As indicated in the Introduction, there is substantial overlap and
convergence between ideas in Kitcher’s account of unification and our ap-
proach to causation. However, there are also noteworthy differences.

Our proposed theory takes a broadly logical notion of reason to be more
fundamental than the notion of causation. Certain reason relations have
a causal meaning, others do not. We try to draw the distinction between
causal and non-causal reasons in a unified way. The resulting analysis
is to save the phenomena—given by our concrete causal judgements—to a
maximally possible extent. While we are not committed to a full blown
unificationist account of explanation, our analysis of spurious causation is
motivated by unificationist ideas: the reason relations of genuine causal re-
lations are superior to those of spurious causal relations because the former
employ more fundamental laws, that is, laws which have more explanatory
power in the unificationist hierarchy. Put differently, we merely say that
unification is one dimension according to which a given explanation may
be assessed. In the case of spurious causal explanations, this dimension is
decisive for discounting them as genuinely causal.

Since we merely exploit some unificationist ideas and notions for our anal-
ysis of causations, standard criticisms directed at the unificationist accounts
by Friedman (1974) and Kitcher (1989) do not apply to our analysis. Most
importantly, we do not say that explanation always has a unificatory struc-
ture. Nor do we say that unification always provides us with an explana-
tion. Presumed counterexamples to the unificationist account, therefore,
do not affect our approach to spurious causation. A more general concern
arises from what has been termed the the-winner-takes-it-all problem, though.
At least in physics, scientists have come up with more and more unified ac-
counts. As a consequence of this, we would have to consider only the most
fundamental theories as properly explanatory. This does not accord with
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scientific praxis, where explanations are also provided in terms of less fun-
damental theories. A case in point are explanations in terms of the ideal
gas law.”

The winner-takes-it-all problem does not arise for our analysis of causation.
Consideration of more fundamental theories does not change the verdicts
about spurious and genuine causes in such a manner that a presumably
genuine cause becomes spurious. Take the simple theory about freezing
water from Section 5. Suppose we extend this theory by the kinetic theory
of heat—covering not only gases, but also liquids and solid states—and
other elements of thermodynamics. Then we can translate the event of
a drop of the air temperature below freezing point into a corresponding
drop of the mean kinetic energy of the molecules in the air. Furthermore,
we have an inferential path from the drop of the mean kinetic energy of the
air molecules to the formation of a thermodynamic equilibrium between
the water reservoir and the air of the environment. This inferential path
represents the transfer of kinetic energy from water to air. As a consequence
of this energy transfer, the mean kinetic energy of water molecules drops
below a certain threshold. Water, therefore, starts freezing. In brief, we
obtain a new inferential path from the genuine cause to its effect which is
forward-directed, and satisfies the condition that all laws of the path are
non-redundant relative to the set of laws of the epistemic state.

The spurious cause, by contrast, remains without such an inferential path.
The kinetic theory of heat does not allow us to infer the freezing of wa-
ter from a thermometer reading below zero degrees Celsius such that the
corresponding inferential path is forward-directed and satisfies the condi-
tion that all laws of the path are non-redundant. This can be seen from the
following considerations. When we adopt the kinetic theory of heat and
other elements of thermodynamics, the causal implications A1 and A, be-
come redundant. Since the spurious causal implication A3 can be inferred
by abductive reasoning from {A;, A, }, this implication remains redundant.
(A1, Ay, and A3 are understood as in Section 5.)

Even though A; becomes redundant, the event of the air temperature drop-
ping below freezing point remains a genuine cause on our analysis. For we
can describe this event in terms of a drop of the mean kinetic energy of the

7For a detailed criticism of the unificationist account of explanation, including the-
winner-takes-it-all problem, see Woodward (2003, sects. 8.6-8.10).
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air molecules without using any backward-directed inferences. By contrast,
the drop of the thermometer reading cannot be translated into a drop of the
mean kinetic energy of the air molecules. If we were to infer a drop of the
mean kinetic energy of the air molecules from the fall of the thermometer
reading, this inference goes backward in time. For no thermometer im-
mediately displays a drop in mean kinetic energy of the surrounding air.
This is well known for liquid thermometers, such as old-fashioned mer-
cury thermometers, but holds also true for electric thermometers.

Similar considerations apply to the famous scenario about the hooters of
two factories, one in Manchester and another in London. We have dis-
cussed this scenario in Section 7. The verdicts of our analysis do not change
if we consider the laws of electrodynamics, acoustics, and some pieces of
neurophysiology to better understand why the factory workers leave the
factory upon a signal by the hooters. Note, finally, that consideration of
more fundamental theories in physics enabled us in the first place to for-
mally distinguish between spurious and genuine causes in the scenario of
lightning. In sum, considering more fundamental levels improves or does
not change the delineation between spurious and genuine causes on our
analysis.

One word on the best system account of laws of nature is in order. This
account is a close relative to the unificationist approach to explanation. In
essence, it says that ‘the laws of nature are the true generalizations that best
systematize our scientific knowledge” (Cohen and Callender 2009, p.2).
This understanding of lawhood goes back to Mill (1843/2011), Ramsey
(1931a, p.242), and Lewis (1973b, p.73). Our theory of causation is ob-
viously sympathetic to the best system account of laws, but we are not
committed to that account. The present approach to spurious causation be-
gins with a minimalist and syntactic notion of law, which is weaker than
the standard notion of a proper law of nature. Our final notion of a non-
redundant law may nonetheless be an interesting candidate to explicate the
best system account. We leave this for future research.

13 Other Solutions

Let us now briefly compare our proposal for delineating between genuine
and spurious causes to other accounts of this distinction. In doing so, we
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will also look at probabilistic analyses of causation. An important result
of this comparison is that principles of parsimony and simplicity are quite
frequently used in contemporary solutions to the problem of spurious cau-
sation. Our analysis is thus in good company, but does not coincide with
any extant account of deterministic causation.

Reichenbach (1956) was the first to give a thorough treatment of common
causes in a probabilistic framework. His strategy for solving the problem
of spurious causation—in common cause scenarios—may be described as
follows. He begins with a proto-theory of probabilistic causation, according
to which causation is simply probability raising. In brief, C causes E iff
C raises the probability of E. A probabilistic cause makes the occurrence
of its effect more probable. For this proto-theory the problem of spurious
causation arises. For example, a significant drop of the barometer raises the
probability of stormy weather.

The next step is to refine the proto-theory so as to exclude spurious causes.
In essence, C is a genuine probabilistic cause of E iff (i) C raises the prob-
ability of E, and (ii) there is no event C’ such that C’ screens off C from E,
while C’ is earlier or simultaneous to C. C’ is said to screen off C from E iff
C and E become probabilistic independent once we assume that C’ occurs.
In more technical terms, C’ screens off C from E iff P(EAC | C') = P(E |
C') - P(C | C’). The event of a low-pressure system approaching screens
off the drop of the barometer from stormy weather, and precedes the lat-
ter events. Hence, the drop of the barometer does not qualify as a genuine

cause.?

Two points seem noteworthy when looking at Reichenbach’s solution to the
problem of spurious causation from the perspective of our analysis. First,
Reichenbach’s definition of probabilistic causation makes use of temporal
relations among events, just as our inferential analysis of deterministic cau-
sation does. The direction of time, in turn, is defined by Reichenbach in
terms of statistical and probabilistic concepts without reference to causal
notions. Our inferential analysis of deterministic causation is consistent
with this definition.

Second, Reichenbach’s account of probabilistic causation cannot directly

8See Reichenbach (1956, chs. 18-23) for details of his analysis of probabilistic causation.
The final definition of probabilistic causation—also referred to as causal relevance— is given
by Definition 2 on page 204. We have simplified this definition by the assumption that a
common cause is always given by a single event, thereby excluding conjunctions of events.
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be extended to deterministic causal scenarios. Suppose for contradiction
that deterministic causation is just a limiting case of probabilistic causation.
Further, suppose A is a deterministic cause of B, which in turn causes E
deterministically. And A precedes B, which in turn precedes E. A, B, and
E thus form a simple causal chain:

Figure 63: Causal chain

Let us also assume that the unconditional probabilities of the events A, B,
and E are between zero and one, which is a natural assumption to make.
Then the conditional probabilities P(BAE | A), P(B| A),and P(E | A) are
all equal to one. Hence, A screens off B from E. Since A precedes B, this im-
plies that B cannot be a probabilistic cause of E according to Reichenbach’s
definition of probabilistic causation. Since we assumed that deterministic
causation is a limiting case of probabilistic causation, we can infer from this
result that B is not a deterministic cause of E. This contradicts our assump-
tion that B is such a cause.

One may defend a generalization of Reichenbach’s approach to spurious
causation to deterministic scenarios by arguing that simple causal chains
do not exist in nature. We may well be able to always find another causal
factor of a given effect. This is an implication of Hausman’s independence
principle, explained in Section 6. We have assumed the latter principles for
the effects of a common cause. Our main reason for not using Reichen-
bach’s approach to spurious causation is that the latter uses a different
framework. The goal of this book is to analyse deterministic causation,
broadly construed.

Unlike Reichenbach (1956), the theory of probabilistic causation in terms of
causal models by Spirtes et al. (1993) and Pearl (2000) does not rely on tem-
poral relations among events. While taking the notion of causation more
seriously than the mainstream literature in statistics, Spirtes et al. (1993)
and Pearl (2000) acknowledge that we cannot derive causal models from
statistical data in a unique way. Considerations of simplicity are therefore
needed in order to favour one causal model over another with respect to a
given set of statistical data. This strategy is in line with the unificationist
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account of explanation. Both the unificationist account and the best system
account of laws of nature are obviously driven by some principle of sim-
plicity. The question thus arises whether modern probabilistic theories of
causation could be rephrased so as to fit the unificationist picture of expla-
nation. We leave this question for future research.’

Let us now look at proposals of how to solve the problem of spurious causa-
tion in a non-probabilistic framework. The analyses of causation by Baum-
gartner (2013) and Baumgartner and Falk (2019), and Spohn (2006, 2012)
merit consideration. There is much convergence between Baumgartner’s
solution to the problem of spurious causation and our proposal for solving
this problem. Both solutions substantially rely on some notion of redun-
dancy, defined for theories about a given causal scenario. Baumgartner’s
analysis of deterministic causation is a refinement of the INUS account by
Mackie (1965). The latter account represents causal relations by bicondi-
tionals of the following form:

(C1,1 A A Cl,n) V..V (Ck,1 A A Ck,m) < E.

Each atom C; ; stands for a specific type of event or fact. And each C;; is an
insufficient but non-redundant part of an unnecessary but sufficient con-
dition for E. In this sense, each C;; is a cause of E at the type level. A
type-level cause is at least an INUS condition. As is well known, INUS is
an acronym which stands for insufficient but non-redundant part of an unnec-
essary but sufficient condition.

Suppose T is a set of biconditionals of the above form. All members of
T are extensionally true. Then each member of T and T itself must satisfy
certain conditions of minimality and non-redundancy in order to qualify as
a theory of genuine INUS conditions which excludes spurious INUS con-
ditions. In essence, no biconditional must contain a conjunction of factors
Ci1 A ... A Cj; such that the biconditional obtained by removing this con-
junction is extensionally true as well. This analysis succeeds in excluding
spurious causes in scenarios where each effect of a common cause has at
least two causal factors. The two causal factors, one of which is the com-
mon cause, may form a conjunctive or a disjunctive causal scenario. We

9Woodward’s (2003) interventionist account makes use of the framework of causal mod-
els by Pearl (2000). The problem of spurious causation is explicitly addressed, and serves as
an important motivation for the proposed account. We will discuss this account in Chapter
10.
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have discussed such scenarios in sections 5 to 8, and shown that our analy-
sis succeeds in these scenarios as well. We conjecture that theories T which
satisfy the minimality constraints in Baumgartner and Falk (2019) are max-
imally unified in the sense of our unification order <,, defined in Section
11. We leave the proof of this conjecture for future work.!”

A distinctive merit of the INUS approach to spurious causation is simplic-
ity. It is certainly simpler than our inferential approach. However, the ad-
ditional complexity of our proposal comes with additional benefits at the
level of the overall theory of causation. First, our analysis of causation can
be applied to mathematically complex theories in science in a relatively di-
rect manner. What matters are inferences and temporal relations among
events which are inferred in an application of the scientific theory to a con-
crete scenario. The INUS account, by contrast, runs into problems when
it is applied to quantitative causal relations. Second, our theory continues
to work for causal relations in time-symmetric theories. By contrast, the
refined INUS account of causation by Baumgartner and Falk (2019) fails to
work for such relations. This will be shown in Section 9 of Chapter 10.

Why is there a problem with quantitative causal relations for the INUS
account? Take Newton’s law of gravitation. This law tells us that the
gravitational force between two objects is proportional to the product of
the masses of the two objects, but inversely proportional to the square of
their distance. We standardly interpret the law in a causal manner: it’s
the masses of the two objects which cause the gravitational force between
the two. Now, the problem is that there is an infinite set of combinations
of masses and distances which determine one and the same gravitational
force. To give a simple example, two bodies with the units of mass 1 and 4
exert the same gravitational force upon one another as two objects with the
units 2 and 2, provided the distance between the bodies is the same.

If we want to capture the causal relations represented by the law of gravi-
tation in the format of the INUS account, we end up with a set of very com-
plex biconditionals. Each biconditional says that the gravitational force has
value F iff the mass of one object has value m;, that of the other the value
my, while the distance between the two has value r, or ... . For each bi-
conditional, F is a specific real number, and so are m;, my, and r in each

19May and Graf3hoff (2001) were the first to suggest this refinement of the INUS account
of causation. We refer to Baumgartner (2013), and Baumgartner and Falk (2019) because the
latter articles go beyond May and Grafshoff (2001) in some respects.
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conjunction of the biconditional. Strictly speaking, the biconditionals are
not only very complex, but uncountably infinitely long. This is so because
we need to use real numbers in classical mechanics. And for each specific
value of the force function, there is an uncountable set of combinations of
masses and distances of the two objects such that the gravitational force be-
tween the two objects has the value in question. Classical first-order logic
is certainly not expressive enough for such biconditionals since any classi-
cal first-order formula is finite in length. It remains to investigate whether
infinitary logics could help. The challenge is that the members of an un-
countable set cannot be represented by an infinite sequence.!!

Newton’s law of gravitation cannot directly be adopted into the notation
of the INUS account since it does not have the form of a biconditional. A
merely qualitative formulation of Newton’s law of gravitation would give
us only a severely impoverished account of the causal claims in classical
mechanics. These considerations generalize to all equations in scientific
theories which rely on real numbers. We will look at the law of classical
gravitation from the perspective of our theory in the next chapter.

To put our critical note more cautiously, it has remained an open problem to
translate quantitative, deterministic theories in science into the framework
of the INUS account. This account has certainly distinctive merits when
we study qualitative causal relations in scientific and everyday contexts.
And we should emphasize once more the commonalities between Baum-
gartner’s refinement of the INUS account and our analysis. Both employ
criteria of minimality and non-redundancy in order to exclude spurious
causes. Both succeed for a wide range of causal scenarios.

Finally, a note on the ranking-theoretic analysis by Spohn (2006) is in order.
This analysis aims to discriminate between spurious and genuine causes
without using criteria of minimality and simplicity. Each possible world
has a certain rank which is an inverse measure of its plausibility. The lower
the rank, the more plausible the world is. Using ranks of possible worlds,
Spohn defines what it is for a proposition to be reason for another proposi-
tion. Then the Humean convention comes into play to make the transition
from reasons to causes. Our epochetic theory uses this transition as a tem-
plate. It is indebted to Spohn’s ranking-theoretic analysis for this reason.

However, the determination of the ranks of possible worlds relies on infor-

1gee Bell (2023) for an overview of infinitary logics.
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mation about the causal graph of the respective causal scenario. For exam-
ple, Spohn (2006, p.106) speaks of a ‘conjunctive fork in which the ranks
again just count the violations of the causal relations’. Reference to ‘causal
relations” must be understood here in the sense of genuine causal relations.
If, by contrast, violations of spurious causal relations had the same impact
on the ranks of possible worlds, Spohn’s analysis would fail to work.

Some information about the genuine causal relations is therefore taken as
primitive for the delineation between spurious and genuine causes. Since a
ranking function plays the role of an epistemic state, it is assumed that the
respective agent has information as to which possible worlds score well in
conforming to the genuine causal relations. To give an abstract example: if
Cis a genuine cause of E, then a possible world in which C occurs without E
violates a genuine causal relation. But not so if C is a mere spurious cause
of E. In essence, the rank of a possible world serves as a measure of the
violations of the genuinely causal laws. The ranking-theoretic analysis thus
departs—perhaps unintentionally—from the Humean project of analysing
causation without taking any causal notions as primitively given.

Our epochetic theory uses an ordering of epistemic priority too. The or-
dering is simple and characterized without causal notions. The first level
contains laws, where the notion of law is understood in a minimalist and
syntactic sense. The second level contains beliefs about presumed facts.
Moreover, we assume that the beliefs of an epistemic state contain infor-
mation about the temporal relations among events. Nothing less, nothing
more.



Chapter 9

Simultaneous Causation

If the cause is simultaneous with its effect, how can we account for the di-
rection of causation? In such cases, we may not find any asymmetry merely
by looking at the given pair of cause and effect. However, we can recog-
nize an asymmetry when we look for further explanations why cause and
effect occurred, respectively. In essence, we are able to causally explain the
occurrence of the cause in a manner which is independent of the simulta-
neous effect and in accordance with the Humean convention. But not the
other way around. Simultaneous causation will thus be analysed in terms
of Humean causal relations, in which the cause precedes its effect. This
analysis draws on ideas about simultaneous causation in Dummett (1954).

1 Some Examples

Let’s first look at some scenarios which have been adduced to show that
there is simultaneous causation:

(1) A locomotive is pulling a coach.
(2) The rotation of a gear ring causes another gear ring to rotate.
(3) Lowering one end of a sea-saw causes the other end to go up.

(4) A lead ballis resting on a cushion, and so causes a deformation of the
cushion.

214
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(5) A force acting upon a body causes this body to accelerate.

In some of these scenarios, we may be able to recognize a very small tempo-
ral delay between cause and effect. Since no material is absolutely rigid, the
other end of the sea-saw does not immediately move up when we force one
end to move down. Since gear rings made of steel are not absolutely rigid,
rotation and momentum are not immediately transmitted among gears. We
will not pursue this strategy of eliminating presumed instances of simulta-
neous causation for the following reasons.

Our theory of causation is aimed at capturing causal judgements. Such
judgements are relative to an epistemic state and a model of the respec-
tive causal scenario. If we took into account that even sea-saws and gear
rings made of steel are elastic and deformable, the resulting models would
become very complicated. Another problem is that—in the above causal
scenarios—we seem to be able to differentiate between cause and effect
without recognizing small temporal delays between the two. Finally, we
cannot recognize any temporal delay between total forces and correspond-
ing accelerations in classical mechanics.

Despite our interest in simultaneous causation, it is worth noting that mod-
ern physics has eliminated simultaneous causal relations to a large extent.
Relativistic theories in physics tell us that all fundamental interactions in
physics are constrained by the speed of light. Roughly, an object exerts
a force on another object in such a manner that the effect occurs after the
time interval which light takes to travel from one object to the other. The
details are complex, which is why we do not give an overview of relativistic
physics here.

Kutach (2013) has delivered an account of causation in fundamental
physics in which the asymmetry of causation is strictly aligned with the
arrow of time. A cause always precedes its effect on his account. Back-
ward and simultaneous causal relations are excluded. The argument
against backward causation makes use of interventionist considerations,
and seems to be a variant of the bilking argument to be discussed in the
next chapter. Kutach shows his theory of causation to apply to classical
gravitation, relativistic electromagnetism, general relativity, and quantum

1These examples are adopted from Huemer and Kovitz (2003), who in turn draw on
Taylor (1966, p. 35), Brand (1980, p. 138), and Kant (1781/1998, A 203).
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mechanics. Classical gravitational interactions are interpreted as arbitrarily
fast instead of instantaneous.

Our envisioned theory of causation is, of course, in principle consistent
with an account of causation in fundamental physics which avoids simul-
taneous and backward causation altogether. If there was only forward cau-
sation in fundamental physics, this would be great news for any reconsid-
eration of the Humean convention, such as ours. We include simultaneous
causation to make our theory more comprehensive and more easily appli-
cable to causal scenarios where a temporal delay between cause and effect
is difficult to recognize.

2 Causal Explanatory Asymmetries

In cases of simultaneous causation, we may not find any asymmetry merely
by looking at the given pair of cause and effect. However, we seem to find
an asymmetry when we look for further explanations why cause and effect
occurred, respectively. In essence, while the occurrence of the cause can be
causally explained independently of the effect, no such independent causal
explanation is available for the occurrence of the effect. This account of
simultaneous causation goes back to Dummett:

If, then, the immediate cause is always simultaneous with its
effect, how do we decide which of two events is the cause and
which the effect? [...] We determine which one is the cause by
deciding which one can be already causally accounted for without ref-
erence to the other. This statement is not viciously circular; our
system of causal explanations is constructed piecemeal, and it
is only when we already have a causal explanation of the oc-
currence of one of two events, each the sufficient and necessary
condition of the other, that we can decide which of the two we
are going to regard as the cause of the other. (Dummett 1954,
p-30n, emphasis added)

Let us now further elaborate this approach to simultaneous causation
within our inferential framework. Deviating from Dummett’s account, we
will not refer to necessary and sufficient conditions in order to analyse si-
multaneous causal relations.
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Recall that we identify causal relations in terms of inferential pathways be-
tween cause and effect. For A to be a cause of E, it is necessary that there is
an inferential path from A to E which is forward-directed and which avoids
redundant laws. In other words, A >y E is a necessary condition for A to
be a cause of E. Let’s say that A explains E, possibly causally, iff A >y E,
and both A and E are actual events. Using this simple and preliminary
understanding of an inferential explanation, we can be more precise about
explanatory asymmetries between two events. First, we define the notion
of an explanatory inferential path from an event A to another event E such
that this path does not go via a third event B.

Definition 27. A\B >y E

Suppose S is an epistemic state such that A, E, and A >y E are believed.
We say there is an explanatory inferential path from A to E which does not
go via B—and write A\B >py E € K. (S)—iff there is a deduction of E
from A which meets all conditions of Definition SRTry and the additional
condition that B does not occur as an intermediate conclusion or premise.
Nor does any sentence synonymous to B occur in this deduction.

In other words, A\B >>py E means that there is an epistemic state S’ such
that (i) S’ is uninformative on A and E, (ii) S’ results from a contraction of
Sby AV E, and (iii) there is a deduction of E from |JS' U {A} such that
this deduction is forward-directed, no law is redundant in | J S, and B does
not occur as an intermediate conclusion or premise. Note that A\B >y E
may be understood as a ternary conditional.

Why do we require that the inferential path from A to E must not use a
sentence which is synonymous to B? Take the cushion which is deformed
by a lead ball. We can also describe the event of placing a lead ball on the
cushion by saying that a lead spherical object has been placed on the cush-
ion. But we shouldn’t say that there is an explanatory inferential path from
placing a spherical object on the cushion to the deformation of the cush-
ion which is independent of the event that a lead ball has been placed on
the cushion. Admittedly, some vagueness is involved in the notion of syn-
onymy. We can delimit, if not avoid, problems of synonymous descriptions
by restricting the vocabulary in which the beliefs of the respective epistemic
state may be expressed

Using the conditional A\B >pn E, we can say what it means that one event
has explanatory priority over another.
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Definition 28. Explanatory priority

Let S be an epistemic state. A and B are two events which are simultane-
ous, and believed to occur in the epistemic state S. All causal relations are
understood in the sense of Definition 26. We say A is explanatorily prior to
B iff the following two conditions are satisfied.

(1) There is C such that C causes A, and C\B >pyA € K~ (S).

(2) There is no C’ such that C" causes B, and C'\ A >y B € K~ (S).

In brief, A is explanatorily prior to B iff it has a causal explanation indepen-
dent of B, while B has no causal explanation independent of A. This rela-
tion of explanatory priority does not rest on any temporal relation between
the events A and B. It rather concerns the causal explanations available for
A and B, where causation is understood with the Humean convention in
place and according to our analysis in the previous chapter. We are now in
a position to reformulate Dummett’s account of simultaneous causation in
our framework.

Definition 29. Simultaneous cause
C is a simultaneous cause of E—relative to an epistemic state S—iff all of
the following conditions hold:

(1) C,E € K(S)
(2) C>mv E € K. (5)
(3) C does not precede E, nor does E precede C

(4) Cis explanatorily prior to E.

Recall that we have defined the notion of forward-directed deduction—
which underlies the conditional > ry—in the weak sense that no inferen-
tial step is backward-directed in time. For this reason, there are forward-
directed deductions of an effect from a simultaneous cause. Understanding
simultaneous causal relations in this way allows us to generalize our anal-
ysis of causation set forth in the previous chapter:

Definition 30. Cause
Let C and E be events. C causes E—relative to an epistemic state S—iff

(1) C,E € K(S),
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(2) C >N E € K(S), and

(3) C precedes or is explanatorily prior to E.

This is our final reductive analysis of causation in Part II. It is reductive
for the following reasons. Most notably, the analysis does not rely on
causal models with structural equations. No causal relations are taken as
antecedently understood or primitively given. While the relation of ex-
planatory priority is defined in terms of causal relations, such relations
are explained by our Humean analysis from the previous chapter. No-
tice, furthermore, that the analysis has the logical form of an explicit def-
inition. Specifically, we can replace the relation of explanatory priority by
its definiens. Likewise, we can replace reference to causal relations in the
definition of explanatory priority by the analysans of our Humean analysis
from the previous chapter. The latter analysis is reductive.

In the next chapter, we move on to backward causation, which may be
seen as one of the three major challenges for a broadly Humean approach
to the direction of causation. As previously indicated, the notion of back-
ward causation has remained controversial in the literature. It is, in par-
ticular, controversial how the direction of causation may be understood in
instances of backward causation. We will consider one specific account,
and outline how backward causation may be integrated into our broadly
Humean analysis. However, we will not endorse this integration for the
time being. We are hesitant for mainly two reasons. First, there remain
open problems for the specific account of backward causation considered.
Second, the account implies that, so far, we lack empirical evidence for the
claim that our world exhibits instances of backward causation. The above
analysis is therefore our final reductive analysis of causation in Part II.

3 Causal Scenarios

Our analysis is now able to capture all scenarios of simultaneous causation
looked at in the first section. Ad (1): the locomotive is pulling a coach.
We read this statement in a causal manner. The motion of the locomotive
causes the coach to move, but not vice versa. To apply our analysis, we
need to show, first, that we can causally explain the motion of the locomo-
tive independently of the motion of the coach. Second, we need to show
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that any causal explanation of the motion of the coach goes via the motion
of the locomotive.

Why is the locomotive moving? It may be driven by a combustion or an
electric engine. Suppose we have an old-fashioned steam engine, which is
of the combustion type. The application of our analysis to other combus-
tion engines and an electric engine is largely analogous to what follows. A
steam engine is roughly based on the following chain of processes:

(1) Coalisburnt so that the temperature of a water reservoir reaches and
stays at boiling point.

(2) When reaching boiling point, water evaporates.

(3) The evaporated water increases the pressure on a piston.

(4) The increased pressure on the piston makes the piston move.
(5) The motion of the piston is transmitted to cranks.

(6) The cranks drive the wheels of the locomotive.

(7) The locomotive moves because of the motion of the wheels.

(8) The coach is in motion because of the motion of the locomotive and
the coach being attached to the locomotive.

Each of these processes is in itself causal. To be more precise, each process
consists of two subprocesses, or events, such that one causes the other. Ob-
viously, we have used broadly causal language to describe the processes.
Speaking of transmission and saying that some motion is driving another
motion indicate a causal direction. Also, the conjunctions because and so
that are used with a causal meaning. Note that the processes form a se-
quence such that each element is a cause of its successor. Thus, we have a
sequence of causal processes. Note that each process qualifies as an event
which is temporally extended.

How can we justify the presumed causal directions in our description?
Some of the causal connections seem to be of the simultaneous type. As-
suming an absolutely rigid connection between the piston and the cranks,
there is no temporal delay between the motion of the piston and the corre-
sponding motion of the cranks. Likewise for the motion of the cranks and
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the motion of the wheels. However, at least for the first two elements in
our sequence, we can justify the presumed causal direction by the Humean
convention. The temporally extended event of burning coal begins at a
time before water reaches boiling point. Coal needs to be burnt first before
water evaporates.

To see the causal order between the first elements of the sequence more
clearly, let’s assume for contradiction the causal hypothesis that water
reaching and staying at boiling point causes coal to burn in a steam en-
gine. If we make this assumption, we need to look for a causal explanation
of the water reaching and staying at boiling point. Such an explanation is
needed since the event of water reaching and staying at boiling point—in
an environment which is colder than the boiling point of water—is not an
event sui generis. It is not caused by itself, and therefore requires a causal
explanation. No such explanation can be found. Specifically, the motion
of the piston cannot be used in a causal explanation of the temperature of
water. For the piston does not move before the water reaches boiling point
and evaporates. Again, the Humean convention proves surprisingly pow-
erful: a causal explanation of the temperature of water by the motion of the
piston amounts to a violation of this convention. And while it is true that
the piston may be used to increase the temperature and pressure of air, and
thereby increase the temperature of water, this is not what’s happening in
a steam engine. For evaporated air is constantly released by the steam en-
gine. This is why we are seeing white smoke coming out of a steam-driven
locomotive.

It may also be worth noting that burning coal is an irreversible process
since it goes along with an increase of entropy. The second law of thermo-
dynamics tells us that the entropy of a closed system never decreases, at
least not at the macroscopic level. A locomotive driven by a steam engine,
taken together with the surrounding air into which the steam is released, is
considered a thermodynamically closed system. While it has become tech-
nologically feasible to reduce carbon dioxide to carbon, such processes are
not simple reversals of combustion. Specific catalysts and conditions are
needed to obtain carbon from carbon dioxide. By contrast, the rotation of
cranks and wheels are reversible processes. Wheels and cranks can rotate
both forward and backward without any violation of the second law of
thermodynamics. Sometimes a locomotive goes backward.

The crucial point is that we can use our knowledge about the causal or-
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der of the initial elements in the sequence of processes in order to assign
a causal order to the others. For we have a Humean causal explanation of
the rotation of the cranks which begins with the process of burning coal
and goes via the increase of water temperature, the evaporation of water,
the increase of pressure on the piston, and the motion of the piston. This
explanation can be extended to a Humean causal explanation of the motion
of the coach by adding three more elements: the rotation of the wheels of
the locomotive, the motion of the locomotive, and the motion of the coach.
By a Humean causal explanation, we mean one where the cause precedes
the effect—at least in the sense that the temporally extended cause begins
earlier than the temporally extended effect. Clearly, while in a running
steam engine coal is being burnt at the same time at which the cranks are
rotating, the process of burning coal started earlier than the rotation of the
cranks.

By contrast, we do not have a Humean causal explanation of the rotation of
the cranks which avoids reference to the motion of the piston, increase of
pressure on the piston, evaporation of water, and heating of water by burn-
ing coal—provided the locomotive is not going downward, is not pushed
by another locomotive, etc. Put more carefully, looking at standard ac-
counts of the key processes in a steam engine, we cannot identify an event
C’" which satisfies the following two conditions: first, C’ precedes the rota-
tion of the cranks and the motion of the coach, but is different from burning
coal, water evaporating, and the increase of pressure on the piston. Second,
we can infer the rotation of the cranks and the motion of the coach from C’
in a forward-directed manner such that no law is redundant.

We have thus shown that (i) the process of burning coal stands in the rela-
tion of explanatory priority to the rotation of the cranks, the motion of the
locomotive, and the motion of the coach. Moreover, (ii) there is a forward-
directed inferential path from burning coal to the rotation of the cranks, the
motion of the locomotive, and the motion of the coach. (iii) The laws of
this path are non-redundant, as will be shown shortly. (iv) The rotation of
the cranks and wheels of the locomotive as well as the motion of the loco-
motive itself are simultaneous to the motion of the coach, given these parts
are connected absolutely rigidly. If the connections are not fully rigid, a
Humean analysis of the causal relations in question can be even more eas-
ily justified, as we have seen in Section 1. (i) to (iv) imply that the motion
of the locomotive is a simultaneous cause of the motion of the coach on our
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analysis of simultaneous causation. Likewise, the rotation of the cranks is
a simultaneous cause of the rotation of the wheels, and the latter is a simul-
taneous cause of the motion of the locomotive.

The sceptical reader may want to see a justification for claim (iii). The in-
ferential path in question may be established by macroscopic laws from
engineering and phenomenological thermodynamics. These laws are re-
dundant iff they can be derived from more fundamental laws of physics
given by the background theories in the respective epistemic state. Now,
we have to distinguish two cases. First, the macroscopic laws in question
are non-redundant relative to the epistemic state considered. Then the in-
ferential path with the macroscopic laws is free of redundant laws. Sec-
ond, the macroscopic laws are redundant since they can be derived from
more fundamental laws. Then, however, we can transform the inferential
path with the macroscopic laws into a path with the more fundamental
laws without changing the temporal relations among events. The inferen-
tial path thus obtained is free of redundant laws. Either way, claim (iii)
holds true.

We have also shown that the motion of the coach does not stand in the re-
lation of explanatory priority to the motion of the locomotive. There is no
cause of the motion of the coach whose explanatory, inferential pathway
does not go through the motion of the locomotive. The motion of the coach
is therefore not a simultaneous cause of the motion of the locomotive. Like-
wise, the rotation of the wheels is not explanatorily prior to the rotation of
the cranks. Hence, the former is not a simultaneous cause of the latter.

Ad (2) in Section 1: the rotation of a gear ring causes another gear ring to
rotate. This causal scenario can be dealt with in a manner which is analo-
gous to the preceding example of a locomotive. Without loss of generality,
think of a bicycle where two sets of gear rings, also called sprockets, are con-
nected by a chain. To make our problem harder, let us assume the chain is
absolutely rigid. Suppose you are riding your non-electric bicycle, and the
road goes upward. There is no strong tailwind. Nobody is pushing your
bicycle upward. Then we can roughly describe the dynamics of the bicycle
by the following chain of events:

(1) Your legs exert a force on the pedals.

(2) The two cranks rotate because of this force on the pedals.
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(3) The rotation of the cranks is transmitted to the front gear ring.

(4) The rotation of the front gear ring is transmitted to the rear gear ring
by the chain.

(5) The rear wheel rotates because of the rotation of the rear gear.

(6) The whole bicycle is set in motion by the rotation of the rear wheel.

As in the previous scenario, this description assumes a certain causal order
such that each element is a cause of its direct successor. Speaking of exertion
of forces and transmission of a rotation clearly indicates a causal direction. The
use of because in (2) and the conjunction by in (6) have a causal meaning.
How can we justify the presumed causal order? Why do we say that our
legs exert a force on the pedals rather than the other way around?

Again, there is a combustion engine in the background. Our legs move and
exert a force on the pedals because of contraction of certain muscles. This
contraction, in turn, is driven by exothermic biochemical reactions which
go along with an increase of entropy. The ultimate source of energy in
human cells is the oxidation of carbohydrates, fats, and amino acids. Con-
traction of muscles is more directly driven by hydrolysis of ATP (adenosine
triphosphate), where ATP is generated by oxidation of carbohydrates. The
chemical pathways are complex and sophisticated, much more sophisti-
cated than our latest technology used in combustion engines.?

Most notably, hydrolysis of ATP precedes the contraction of muscles, just
as some fuel needs to be burnt first before a man-made combustion en-
gine is driving any wheel or crank. In other words, contraction of muscles
doesn’t happen simultaneously to the underlying exothermic biochemical
reactions. Hence, we have a causal Humean explanation of contraction of
muscles and rotation of the cranks where the cause precedes the effect. This
causal explanation can be extended to a causal explanation of the rotation
of the front gear ring since there is a rigid connection between cranks and
the front gear ring. Rotation of cranks and front gear ring is simultane-
ous, given the connection between the two is absolutely rigid. By the same
pattern, the causal explanation of the rotation of the front gear ring can be

2Any comprehensive undergraduate textbook of biology may be used for an overview
of the biochemistry underlying contraction of muscles.
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extended to a causal explanation of the rotation of the rear gear ring. The
rotation of the two gear rings happens simultaneously.

By contrast, standard descriptions of how a bicycle works contain no pro-
cess which could serve as a causal Humean explanation of the rotation of
the rear gear ring other than the one which begins with contraction of mus-
cles and hydrolysis of ATP. To be more precise, in the absence of en elec-
tric engine, strong tailwind, a downward gradient, etc., there is simply no
causal explanation of the rotation of rear gear ring which avoids reference
to some human legs pedalling the bicycle. To give a simple illustration,
suppose you are cycling upward a steep pass in the mountains. No electric
engine or fellow human is helping you. Then it’s only your muscles which
drive your bicycle with all its gear rings. Hence, given the specific assump-
tions of the causal scenario, the rotation of the front gear ring stands in
relation of explanatory priority to the rotation of the rear gear ring. Hence,
the former is a simultaneous cause of the latter.

Of course, the transmission of motion can also go from the rear to the front
gear. Suppose your bicycle doesn’t have a freewheel. Colloquially, such
a fixed-wheel bike is called a fixie. Now suppose you walk your fixie on
the pedestrian way. Then rotation of the rear wheel forces the rear gear to
rotate. The latter rotation, in turn, is transmitted to the front gear and its
crank via the chain. In this case, we have a causal Humean explanation
of the rotation of the rear gear which is independent of the rotation of the
front gear. Unlike when you pedal your bicycle, the rear gear causes the
front gear to rotate. The Humean cause of the rotation of the rear wheel
with its gears is given by the contraction of muscles which exert a force on
the bicycle as a whole since we have now assumed that you are walking
your bicycle. On this assumption, there is no causal Humean explanation
of the rotation of the front gear independent of the rotation of the rear gear.
Hence, this time, rotation of the rear gear stands in the relation of explana-
tory priority to the rotation of the front gear. The former is therefore a cause
of the latter.

Ad (3) in Section 1: lowering one end of a sea-saw causes the other end to
go up. Using our expertise about biochemical combustion engines and bi-
cycles, we can be briefer about the sea-saw. Suppose some human pushes
one end of the sea-saw down so that the other end moves up. Obviously,
pushing one end of a sea-saw down requires contraction of muscles. This
contraction, in turn, is driven by certain biochemical exothermic reactions
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which set on very slightly before any contraction happens. Hence, we have
a Humean cause of the downward movement of one end of the sea-saw
which is independent of the upward movement of the other end. The re-
verse, however, is not true: we don’t have a Humean cause of why one
end of the sea-saw moves upward which is independent of the downward
movement of the other end. For this reason, the former isn’t on a par with
the latter. Pushing one end of the sea-saw down is thus shown to be cause
of the upward movement of the other end on our analysis.

Ad (4): a cushion is deformed by a lead ball resting on it. The wording
of this sentence seems to imply that the lead ball causes the deformation.
However, we could also argue that the position of the ball is caused by the
cushion. There is a downward, gravitational force of the lead ball which is
countered by the force of the resistance of the cushion. The deformation of
the cushion is inelastic. Again, we have to look for further causal explana-
tions. Notably, a lead ball doesn’t come out of the blue. Given presumed
laws of nature, there must have been some force which placed the ball on
the cushion. For example, someone took the ball in her hand and put it
there. The force exerted by the person’s hand and fingers explains why the
lead ball ended up on the cushion. It is caused by contractions of muscles,
which are driven by exothermic biochemical reactions. Similar consider-
ations apply to causal scenarios where a lead ball has been placed on the
cushion by a robot.

Ad (5): forces cause a body to accelerate. In Aristotelian physics, any mo-
tion of a body requires a force. In Newtonian physics, it’s only acceleration
of a body which does. The link between force and acceleration is com-
monly understood as causal in nature, even though there is no temporal
delay between the two.? For clarification, we need to distinguish between
total forces and special forces, such as gravitational and electromagnetic
forces. The total force acting upon a body is the vector sum of the com-
ponent forces acting upon it. Newton’s second equation tells us that the
vector of the total force equals the product of mass and acceleration:

F=m-a.

F stands for the force vector, m for the mass of the accelerated object, and
a for the acceleration. The acceleration happens simultaneously to the act-
ing of the total force. Newton’s second equation is nonetheless standardly

3See, e.g., Huemer and Kovitz (2003).
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interpreted in a causal manner. This interpretation is suggested by the con-
notations of the Latin word vis, the English word force, the French word
force, etc. The causal interpretation is also driven by our desire to estab-
lish causal explanations of spatiotemporal phenomena. It’s less obvious
whether we should also understand the determination of total forces by
component forces as causal, though.

As with previous examples, we need to look for causal explanations of total
forces and accelerations, respectively, in order to recognize some explana-
tory asymmetry between the presumed cause and its effect. Total forces
are determined by special forces, which in turn are determined by specific
circumstances. The gravitational force between two bodies, for example, is
determined by their masses and the distance between the two according to
the following equation:

mq - myp

Fip=—7- (r1 — 12).

11— 1o
F1, stands for the gravitational force which is exerted on the body with
mass 1, by the body with mass my. r; and r; stand for the positions of the
two bodies in space, represented by vectors. 7 is the gravitational constant.
When merely doing calculations, we can use this equation to determine
various quantities: masses, forces, and positions of objects. At the same
time, there is some understanding that gravitational forces are actually de-
termined by the masses of and the distances between bodies, but not vice
versa. It seems wrong to think that a gravitational force causes the mass
of an object. Likewise, we don’t think that spatial positions of bodies are
directly caused by simultaneous forces, even though forces cause accelera-
tions, which in turn affect the spatial positions of bodies.

Again, the Humean convention—broadly construed so as to apply to tem-
porally extended intervals—helps distinguish between causes and effects
with respect to Newton’s law of gravitation. In classical mechanics, the
mass of a body is constant, given the body remains intact. The tempo-
rally extended event of a body having a certain mass therefore precedes
the event of this body exerting and receiving a certain gravitational force at
a certain time—in the sense that the starting point of the former event pre-
cedes that of the latter. Recall that we have refined the Humean convention
for temporally extended events in Section 5.

Things are less straightforward for the relation between spatial position
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and gravitational force since spatial position is not constant in classical me-
chanics. However, the spatial position s of an object at time ¢ is approx-
imately determined by its spatial position s’ at a previous point # in time
and its velocity at /, given the temporal distance between t and #' is ‘small’.
The margin of error of this determination can be rendered infinitesimally
small by assuming the distance between t and #' to be arbitrarily small.
Hence, at least at the level of infinitesimals, we have a causal Humean ex-
planation of the position of a body in classical mechanics. Position and
velocity cause the position of an object at an infinitesimally later time point
in the sense of our Humean approach to causation in Chapter 7: for C to be
a cause of E, C must precede E, and there must be a forward-directed in-
ferential path from C to E such that any law of this path is non-redundant.
The latter deduction uses beliefs which we can retain when suspending
judgement on C and E.

These considerations show that there is a forward-directed inferential path
from the mass of a body and its spatial position at time #' to the gravita-
tional force at time t such that two conditions are satisfied. First, t is in-
finitesimally later than #'. Second, the temporally extended event of having
a certain mass begins at a time prior to t. It's easy to show that all laws
of the inferential path in question are non-redundant. Provided we know
‘enough’ about other forces acting upon the two bodies of our system, we
can extend the inferential path to one which goes to the total force acting
upon these bodies. Hence, we have a Humean causal explanation of the
total forces acting in our system. By contrast, there is no forward-directed
inferential path that determines the accelerations of our bodies at time ¢
such that this path does not go via the total forces at time t. Hence, the
event of there being a certain total force stands in relation of explanatory
priority to the event of a body being accelerated according to classical me-
chanics. Total forces therefore cause accelerations, but not vice versa, on
our analysis of simultaneous causation.

What about forces other than those of classical gravitational interactions?
As mathematicians would put it, we claim without proof that a similar
demonstration can be given for other types of forces, such as electromag-
netic and contact forces. That is, we can give causal Humean explanations
of such forces in terms of specific circumstances, such as the charges and
positions of objects. Needless to say, the inferential determination of to-
tal forces by component forces is always relative to a specific model of
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the physical system considered. There is no way to make the qualifica-
tion that we need to know ‘enough” about all the component forces acting
on an object—in order to determine the total force—entirely precise. For
real-world systems, it’s almost always impossible to consider all compo-
nent forces. Arguably, this problem disappears only from the hypothetical
viewpoint of omniscience.

Do the specific component forces acting on a body at a specific time cause
the total force acting on this body at that time? We find it difficult to form
an intuition here. The vector sum of the component forces acting on an
object seems a mere mathematical auxiliary, which makes the notation of
the formalism easier. However, on our analysis of simultaneous causation
specific component forces qualify as causes of total forces. In the absence
of firm intuitions, this result seems at least not counterintuitive. Experts on
grounding might prefer to view the relation in question as one of ground-
ing since a component force is part of a total force. However, our intuitions
concerning the distinction between grounding and simultaneous causation
are not always clear-cut. Fine (2012, p.12), for example, thinks that total
forces ground corresponding accelerations. This judgement deviates from
the literature on simultaneous causation and the everyday meaning of the
notion of force.

Suppose we want to maintain a strict distinction between simultaneous
causation and grounding. This may be achieved by a relatively simple con-
straint on causes and their effects in the above account of simultaneous
causation. We simply require that the event of the cause is distinct from the
event of the effect. To make this notion precise, let us exploit the observa-
tion that all events concern a spatiotemporal region. No event seems to be
outside of space and time. So we suggest that two events are distinct iff the
two spatiotemporal regions—corresponding to these two events—do not
stand in a relation of identity or containment to one another. Note that the
scenarios (1) to (4) of simultaneous causation all satisfy this constraint. The
presumed causes are distinct from their effects in the sense just explained.
Things are less clear-cut for scenario (5).*

There remains to discuss briefly a causal scenario considered by Hausman
(1998, 44n). Suppose, you take two boards and position them in such a

“The suggested explanation of when two events are distinct is akin to the one by Lewis
(1986a).
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manner that they lean against one another. Each board would fall if it was
not leaning against the other. Hausman argues that this is a scenario of si-
multaneous causation. The position of each board is caused by the other.
But we can also view this causal scenario as a case of prevention: the po-
sition of each board prevents the other from falling to the ground. The
event of falling down, which is prevented, is in the future of the event of
resisting the other board. Hence, we have at least an interpretation of the
scenario which conforms to the Humean convention. In addition, we have
a Humean causal explanation why the boards are where they are. I have
put them at their current position with my hands, and this action precedes
the extended event of the boards occupying a certain position in space.

4 The Length of the Pendulum

Our account of simultaneous causation may be used to shed some light
on a few more causal scenarios which received a great deal of attention
in the literature on causation and explanation. In this section, we look at
the tower-shadow asymmetry, the length of the pendulum, and the ideal
gas law. Both the tower-shadow asymmetry and the pendulum have been
adduced to show limitations of the old DN-account of explanation (see,
e.g, Bromberger (1966) and Woodward (2003, Ch. 4)). We have a deductive
nomological inference from the length of the shadow to the height of the
tower, but intuitively we are hesitant to view this inference as explanatory.
Likewise, we can approximately derive the length of the pendulum from
its period by the following equation:

T=21 l
8

T stands for the period, I for the length, and g for the acceleration of freely
falling bodies at the surface of the Earth. But we are hesitant to say that the
length of the pendulum can be explained by its period. Woodward (2003),
consequently, uses these and other counterexamples to the DN model of
explanation to argue for a broadly causal account of explanation. Hempel
(1965, p. 352), by contrast, argued that an inferential explanation of the pe-
riod of a pendulum in terms of its length is not of the causal type because
no law of succession is involved.
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Let’s begin with the tower-shadow asymmetry. Obviously, if we take into
account that the speed of light is finite, the Humean convention suffices
to recognize the tower as cause of its shadow. But even in the absence of
this information, we are now in a position to recognize some explanatory
priority between the tower and its shadow. For we have a causal Humean
explanation of the height which is independent of the shadow. For exam-
ple, the height of the tower may be explained by the fact that such and
such a number of layers of bricks have been built upon one another at a
time prior to the casting of the shadow.

One may object to the presumed causal nature of this explanation that the
event of bricks forming a number of layers doesn’t precede the event of the
tower having a certain height. Once the last layer of bricks had been laid
and fixed by cement, the tower began to have a certain height. However,
there is a causal Humean explanation of how the bricks came to form lay-
ers in the first place. Someone simply used his hands and tools to build
the structure of bricks. Combustion engines, broadly conceived as in the
previous sections, did some work to build the structure. And these engines
started their work before the tower with its height came into being.> By
contrast, there is no causal Humean explanation of the length of the shadow
independent of the height of the tower. Hence, the height of the tower
stands in the relation of explanatory priority to the length of the shadow.

Similar considerations apply to the length of the pendulum in relation to
its period. Think of a metronome used for the training of musicians to
mark musical tempo. At least a few decades ago, a metronome consisted
of a pendulum whose length could be adjusted manually. This adjustment
satisfies the Humean convention: someone used her hands to fasten a mov-
able weight so that the pendulum is set to a certain length. And these ac-
tions started at a time which precedes the event of the metronome being
set to a certain length.® If the pendulum is rigid such that the length cannot
be adjusted, then it has some causal history of how it was manufactured
to have such a length. A pendulum needs to be manufactured before it
can be made to swing back and forth, and so the Humean convention is

5Since the layers of bricks are parts of the tower, they may also be said to ground the
tower which has a certain length.

®Without loss of generality, our account of a metronome ignores the mass of those parts
of the physical pendulum which are different from the movable weight. Ignoring the mass
of those parts may also be justified as an idealization because the mass of the movable
weight is much greater than that of the other parts of the pendulum.
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satisfied. Hence, we have a causal Humean explanation of the length of
the pendulum which is independent of its period. By contrast, there is no
such Humean causal explanation of the period of the pendulum which is
independent of its length. Hence, the length of the pendulum stands in the
relation of explanatory priority to its period.

One may object to this order of explanation by arguing that a metronome
gives us a nice example where it makes perfect sense to say that the period
of the pendulum explains its length. The musician adjusts the length of
the metronome’s pendulum in such a manner that it marks a certain mu-
sical tempo.” So, it’s the tempo marked by the period of the pendulum
which causes it to have a certain length, but not vice versa. This objection
is based on a teleological explanation. Our reply to the objection is twofold.
First, in line with wide-ranging consensus in philosophy and science, we
think it desirable to avoid teleological explanations and causes as much as
possible. Second, we prefer to say that it’s the musician’s intention to let
the metronome swing with a certain period which causes a certain setting
of the length. The temporally extended interval of having this intention
precedes the manual adjustment of the length of the pendulum.

Let’s move on to the ideal gas law. This law has two standard formulations:

-V
pT = const

p-V=R-T-n.

p stands for pressure of the gas, V for its volume, and T for its temperature.
R is the gas constant and 7 a quantity called amount of substance which is
a measure of the number of molecules. Hempel (1962, p.12) thinks that
the ideal gas law may be used to explain the value of some of its quanti-
ties in the static case where pressure, volume, temperature, and the num-
ber of molecules are constant. Woodward (2003, p.234), by contrast, holds
that the law helps us explain phenomena only in dynamic scenarios where
some of its quantities are in flux. In line with Woodward, we find it dif-
ficult to see the ideal gas law doing interesting explanatory work in the
static case. For we seem to be at a loss when asked to distinguish between
explanans and explanandum. The problem is that each quantity can be
inferentially determined using the set of the other quantities.

7See van Fraassen (1980, pp. 132-134) for a similar story concerning the height of a flag-
pole and its shadow.
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Assuming our account of simultaneous causation, we show that the ideal
gas law is rather used in causal explanations of changes of pressure, vol-
ume, and temperature, respectively. Taking this law at face value, we have
to say that a change in one quantity goes along with immediate changes of
some of the other quantities. It’s difficult to recognize any temporal delay
between, say, a change in temperature and the changes of pressure and vol-
ume. However, we can recognize external forces and events which cause
directly a change of one quantity without directly causing also the changes
of the other quantities. Think of a steam engine, discussed in the previous
section. Water evaporates and so the number of molecules in the gaseous
state increases by a large amount. Then we can use the ideal gas law to
calculate the impact on the product of pressure and volume. Clearly, the
increase in the number of gas molecules stands in the relation of explana-
tory priority to the changes of the other quantities. For there is a Humean
causal explanation of this increase in terms of heating water and its subse-
quent evaporation. Water needs to be heated before it evaporates. It’s not
the increase in pressure in the cylinder which causes the water to evapo-
rate.

It’s easy to adduce further examples of causal explanation using the ideal
gas law. Think of pumping air into the tyres of your bicycle. Thereby, the
number of molecules in the tyre increases, which leads to an increase of
pressure and volume. If we deflate a properly inflated tyre, the number
of molecules in the tyre decreases, which causes pressure and volume to
decrease. In either case, there is an external cause which changes the quan-
tity n (amount of substance) and which precedes the event of the number of
molecules being set to a certain value. At least the activation of our muscles
which lets us inflate or deflate a tyre precedes any change in the number of
molecules in the tyre.

Arguably, our examples of causal explanation using the ideal gas law are
instances of simultaneous causation: even though the change of one quan-
tity is simultaneous to that of another, we can identify direct causal expla-
nations only for changes of a certain quantity, but not for all. Which change
can be externally and thus causally explained—external to the gas itself—
varies among causal scenarios of thermodynamics.



Chapter 10

Backward Causation

Causation seems to be an asymmetric relation: if C is a cause of E, then E is
not a cause of C. Causal scenarios with cycles are rare to find and contro-
versial. In any case, causation is directed in the sense that we think cause
and effect have different roles. Intuitively, causes bring about their effects,
but not vice versa. How can we distinguish causes from their effects?

The Humean convention gives a simple answer to this question: a cause
always precedes its effect in time. This account works surprisingly well for
a wide range of causal scenarios, particularly in everyday contexts. How-
ever, we must wonder if backward causation is at least a conceptual possi-
bility. What could it mean that this type of causation is conceptually pos-
sible? Should we dispense with the Humean convention to make room for
backward causation?

Abandoning the Humean convention completely seems unreasonable in
view of rather severe problems with the notion of backward causation and
alternative approaches to the direction of causation. In this chapter, we will
review such problems. Thereby, we will establish further results in favour
of a reconsideration of the Humean convention. First, Woodward’s inter-
ventionist test for causation implicitly relies on the Humean convention.
If we abandon this convention, the interventionist test becomes indetermi-
nate as regards the direction of causation. Second, the Humean convention
plays an important role in Reichenbach’s account of the direction of time
and causation.

Third, Lewis’s counterfactual approach to the direction of causation runs

234
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into seemingly insurmountable problems. We will add one more severe
problem to the list of problems which have already been observed in the
literature. In brief, we show that Lewis’s fork theory implies that there is
unlimited growth of concurrent events. Fourth, Hausman’s independence
principle does not suffice to characterize the direction of causation in time-
symmetric theories. This problem arises for the refinement of the INUS
account by Baumgartner and Falk (2019) as well.

We will also discuss the bilking argument against backward causation. The
discussion reveals that empirical and theoretical arguments in favour of
backward causation, if available at all, are indirect and open to interpreta-
tion to a higher degree than our reasoning is for other theoretical hypothe-
ses in science.

In the final section, we will nonetheless outline how backward causation
may be understood within our inferential and broadly Humean approach
to causation. The proposal amounts to a disjunctive approach to the di-
rection of causation, which goes back to Dowe (1996). On this proposal,
the Humean convention remains one of two means to distinguish between
causes and effects.

1 From an Interventionist Perspective

The Humean approach to the direction of causation is simple and straight-
forward: a cause always precedes its effect in time. Obviously, this ex-
cludes the possibility of backward causation. Interventionist approaches to
causation seem to be more liberal in this regard. Roughly, if there are in-
terventions on variable X which change the value of variable Y, then X is a
cause of Y. If, by contrast, there is no way to change Y by intervening on X,
then X cannot be such a cause. So, the conceptual possibility of backward
causation seems to open up once we adopt an interventionist account of
causation (Gebharter et al. 2019).

Contrary to this line of reasoning, Reichenbach (1956) and Black (1956) ar-
gued that an interventionist account of causation rules out the conceptual
possibility of backward causation. In essence, Reichenbach argues that the
outcome of an intervention is only well defined if we accept the Humean
convention about the direction of causation. Black (1956) tries to refute the
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hypothetical assumption of backward causation by drawing on an inter-
ventionist understanding of causation. This refutation is often referred to
as the bilking arqument against backward causation. The intended meaning
seems to be as follows: if there was backward causation, we could bilk the
effect out of its cause. In other words, we could take away the cause from
the effect after the occurrence of the latter. The effect could happen without
its cause, and so the effect would be uncaused. This seems contradictory
in a deterministic setting. Using Woodward’s interventionist account of
causation, we will give a precise formulation of the bilking argument.

The arguments by Reichenbach (1956) and Black (1956) have received
relatively little attention in the more contemporary literature on causa-
tion.! This lack of reception is surprising since the interventionist account
has gained unprecedented popularity among philosophers and other re-
searchers in the wake of the seminal works by Woodward and Pearl. Nei-
ther Woodward (2003) nor Pearl (2009) explicitly address the problem of
backward causation. In what follows, we explain the key elements of
Woodward’s interventionist account of causation. We then review the ar-
guments by Reichenbach (1956) and Black (1956) against the background
of this account.

2 The Interventionist Account with Causal Graphs

The interventionist account of causation is centred on a simple idea: X
causes Y iff there is an intervention on X which changes the value of Y.
What does it mean to intervene on a variable X? What does it mean that an
intervention on the value of a variable makes another variable to change its
value? Woodward (2003) develops a whole theory to answer these ques-
tions. This theory makes essential use of the framework of causal models
by Spirtes et al. (1993) and Pearl (2000). Since we have made ourselves fa-
miliar with the basic concepts of causal models, we can get to the core of
Woodward’s analysis without much further preparation.

The proposed semantic analysis of causal relations rests on the notion of an
ideal intervention: X causes Y iff there is an intervention I on the putative

Price (1996, Ch.7) and Dowe (1996) are notable exceptions. The bilking argument is
given careful consideration there. Friederich and Evans (2019), Gebharter et al. (2019), and
Hausman (1998, Ch. 12) include a brief discussion of this argument.
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cause X which changes the putative effect Y such that—relative to some
variable set—I fulfils a number of conditions which ensure that any change
in Y following I is to be ascribed to X, and X only. [ is an ideal intervention
which tests whether X causes Y iff the following conditions are met:

Iv)

I1. I causes X.

I2. I acts as a switch for all other variables that cause X. That
is, certain values of I are such that when I attains those
values, X ceases to depend on the values of other variables
that cause X and instead depends only on the value taken
by I.

I3. Any directed path from I to Y goes through X. That is, I
does not directly cause Y and is not a cause of any causes
of Y that are distinct from X except, of course, for those
causes of Y, if any, that are built into the I-X-Y connection
itself; that is, except for (a) any causes of Y that are effects
of X (i.e., variables that are causally between X and Y) and
(b) any causes of Y that are between I and X and have no
effect on Y independently of X.

I4. Iis (statistically) independent of any variable Z that causes
Y and that is on a directed path that does not go through
X. (Woodward (2003, p. 98, emphasis added))

The notion of intervention thus is a ternary relation: I intervenes on X rel-
ative to Y. The interventionist test for causation goes as follows:

(M) Xis a (type-level) direct cause of Y with respect to a variable
set V iff there is a possible intervention on X with respect to
Y that will change Y or the probability distribution of Y when
one holds fixed at some value all other variables Z; € V. X is a
(type-level) contributing cause of Y with respect to V iff (i) there
is a directed path from X to Y such that each link in this path is
a direct causal relationship and (ii) there is an intervention on X
that will change Y or the probability distribution of Y when all
other variables in V that are not on this path are fixed at some
value. (cf. Woodward (2003, p. 59))
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This interventionist analysis of causation is not reductive, as Woodward
himself is happy to admit. A great deal of information about the causal
graph of the respective causal scenario is needed in order to apply—
practically or theoretically—the interventionist analysis in question to a
concrete causal claim. No assumptions, however, are made about causal
relations between X and Y in the analysis of causal relations between X
and Y. This is why Woodward thinks that his analysis is not viciously cir-
cular.

Woodward uses both indicative and subjunctive conditionals to describe
what happens under an intervention. The indicative formulation may be
useful for actual experiments and actual interventions: if we change the
value of this variable, we will observe such and such changes of certain
other variables. The subjunctive formulation seems more appropriate for
what Woodward calls hypothetical interventions and hypothetical experiments
(Woodward 2003, p.128n). Interventions of hypothetical experiments do
not have to be practically feasible. Even nomological feasibility is not a
requirement. The notions of hypothetical intervention and hypothetical
experiment therefore introduce a counterfactual element into the interven-
tionist analysis. For the discussion to follow, it is important to note that
Woodward himself advertises his interventionist analysis as a counterfac-
tual one:

I argue below that to elucidate certain kinds of causal claims,
including claims about direct causal relationships and singular
causal claims, one must appeal to counterfactuals with complex
antecedents—counterfactuals that describe what will happen
under combinations of manipulations or interventions, rather
than under single manipulations. (Woodward 2003, p.21)

If Woodward had merely aimed at a theory of actual experiments, there
might be a way to understand (M) without counterfactuals. Since, how-
ever, his analysis is intended to have greater scope, (M) must allow for a
counterfactual reading. This reading is furthermore implied by the leit-
motiv of Woodward’s book: we need to ask what-if-things-had-been-different
questions in order to understand causal explanation. This is not to say that
(M) is confined to counterfactual interventions. Both actual and counter-
factual interventions are important to the interventionist account. We call
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an intervention actual iff it is actually carried it. Otherwise, the intervention
is called counterfactual or hypothetical 2

In light of its counterfactual elements, we can view Woodward’s interven-
tionist account of causation as an attempt to improve on Lewis’” counter-
factual account by exploiting the resources of causal models. Causal claims
are analysed in terms of interventionist counterfactuals rather than variably
strict conditionals as defined in Stalnaker (1968) and Lewis (1973b). With
some qualifications, the conceptual order remains the same as in Lewis’s
account: counterfactuals provide the semantic foundation of causal claims.

3 The Direction of Interventions

When determining counterfactual consequences, we think about scenarios
in which things are different from what they actually are. Some things
change, others remain the same. Which elements of a counterfactual sce-
nario stay the same? Which elements are going to change? For the se-
mantics of variably strict conditionals, Lewis (1979) gave some heuristic
principles to answer these questions. Likewise, Woodward (2003) imposes
certain constraints on interventions, explicated by (IV), in order to explain
the semantics of interventionist conditionals. The question thus arises if
these constraints suffice to yield a semantics in which the relevant inter-
ventionist conditionals have determinate truth values.

In his seminal The Direction of Time (1956, Ch. 6), Reichenbach devises an
argument which may be used to show that the semantics of interventionist
conditionals remains indeterminate without the Humean convention. His
argument is based on a causal scenario along the following lines. Suppose
there are two billiard balls on a billiard table. Let us name them a and
b. a moves straight and unaccelerated toward b, which is at rest. Then a
collides with b so that a changes the direction of its motion. Also, it pushes
b to move. b is a bit larger and heavier than a. At time f;, a is at place ¥, at
time t, it collides with b at place ¥,. Finally, a ends up being at place X3 at
time t3. Here is a graphical illustration:

2For further statements that make the counterfactual content of (M) explicit, see p. 10,
11, 17, and 57 in Woodward (2003).
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Figure 69: Collision between a and b at x>

We think of the collision as a cause of a being at place X3 at time ¢3. This may
be justified by a brief counterfactual consideration: had a not collided with
b at ty, it would not have been at position ¥3 at t3. In this consideration,
we keep the past of t; fixed, while the future of t; is open to changes. The
collision may be represented by a binary variable C. We can intervene on C
simply by taking out billiard ball b. Thereby, the value of C is set to false.

However, we must wonder why we do not hold the future of ¢, fixed. It
seems as if the following counterfactual makes sense as well: had there
been no collision between a and b, a would have come from another di-
rection in the first place. So, the collision is a cause of a being at place ¥;
at time #1. It is a backward cause of the latter event. Once we have liber-
ated ourselves from the Humean convention, we can see a lot of backward
causation in the world. The forward and the backward interpretation are,
respectively, depicted by the following figures:
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Figure 70: Counterfactual scenario 1: Figure 71: Counterfactual scenario 2:
no collision at x> and past is fixed no collision at x> and future is fixed

What’s wrong with the backward interpretation? Which reasons do we
have for holding the past of interventions fixed as opposed to the future?
It seems as if an actual experiment could decide the matter. Let us take the
billiard ball b from the billiard table. Thereby, we intervene on the trajec-
tory of the moving billiard ball a so that no collision between the two balls
occurs. Then we look at what happens when a billiard ball moves from ¥;
to X; in a straight line, without acceleration, and with the same velocity as
in the original setting. We observe that the ball does not end up at position
X3 after the time interval t3 — 1. So, the collision is a cause of the ball a
being at position ¥3 at time ¢3.

However, the proponent of the backward interpretation will not accept the
setup of the experiment. She looks at billiard balls moving straight from X
to X3 since she thinks we should hold the future of the collision fixed rather
than the past. No collision occurs when the moving ball is at X, since we
took the other ball out. We observe that those billiard balls which move
straight from ¥, to X3 were not at position X; before they arrived at position
X,. To be more precise, they were not at x; before they arrive at position X,
such that the time interval between these two positions is t, — t1. So, the
collision is a backward cause of the billiard ball a4 being at position ¥; at
time t;.

A symmetry problem thus arises: backward and forward interpretation
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are equally defensible options without the Humean convention. There is
no asymmetry between the two interpretations if we remain completely
open to the possibility of backward causation. This has unfavourable con-
sequences for Woodward’s interventionist account. Let D be a binary vari-
able, saying that billiard ball a is at position ¥; at time ¢; and has the corre-
sponding velocity of the actual setting. C means that there is a collision be-
tween the billiard balls when a is at position X, with b. Finally, E is a binary
variable saying that a is at position X3 at time t3 with the corresponding
velocity of the actual setting. The interventionist test for causation between
C and E is then not conclusive, even though the causal scenario is quite
simple. We can make a case for the intervention on C changing the value of
E, while D remains unchanged. But we can also make a case for the inter-
vention on C changing the value of D, while E remains unaffected. Hence,
it remains indeterminate whether or not an intervention on C changes the
value of E. The conditional ‘an intervention on C would change the value
of E” lacks a determinate semantic value—without the Humean conven-
tion as a tiebreaker. As a result, the interventionist analysis does not tell
us which event causes which other event for the simple causal scenario in
question.

How to break the symmetry between forward and backward interpreta-
tion? Reichenbach (1956) made a simple suggestion:

No wonder that acts of intervention change only the future, and
do not change the past; the term “intervention” is defined by the
condition that the past be unchanged. The statement that acts of
intervention cannot change the past is a trivial tautology. (p.45)

Reichenbach thinks it is simply conceptually true that interventions do not
change the past. This excludes the possibility of backward causation, given
an interventionist account of causation. The benefit of adopting Reichen-
bach’s suggestion is that it renders the interventionist test for causation
determinate—at least for causal scenarios for which the laws of motion are
known. Put differently, we eliminate an unacceptable indeterminacy from
the semantics of interventionist conditionals by understanding the notion
of intervention in such a manner that interventions do not change the past.
If we understand interventions in this way and view causation from the
perspective of an interventionist analysis, we resume a weak form of the
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Humean convention about the direction of causation: an effect never pre-
cedes its cause. This weaker form of the Humean convention does not ex-
clude cases of simultaneous causation, as we have seen in the previous
chapter.

Some readers will have noticed that the general problem leading to the
apparent indeterminacy of interventionist conditionals is due to the time
symmetry of certain physical theories. Classical mechanics, classical colli-
sion mechanics, and some other theories are time-symmetric. That is, the
laws of these theories remain valid if we change the direction of time. Such
a change may be understood as follows: time point ¢ is earlier than ' on
the reversed direction of time iff #’ is earlier than f on the customary di-
rection. The variables t and # stand for time points taken as primitive or
real numbers conceived as representing time points. Russell (1913) took the
time symmetry of fundamental theories in physics to be a reason for aban-
doning the notion of cause from science altogether. While Russell himself
gave up on this radical position later on, he had a number of followers in
the 20-the century and beyond.?

Unlike classical mechanics, thermodynamics is not time-symmetric. This
fact is exploited in Reichenbach’s proposal for defining the direction of
time (Reichenbach 1956, Part III, IV). The presented argument concerning
the direction of interventions is independent of whether or not we seek to
define the direction of time. The argument goes through, even if we take
the direction of time for granted. When developing his argument about the
direction of interventions, Reichenbach himself wanted to show that inter-
ventions cannot define the direction of time. We have used the argument
to defend a weak form of the Humean convention about the direction of
causation.

As is well known, the symmetry problem concerning forward and back-
ward interpretation arises for counterfactual accounts of causation in the
tradition of Lewis (1973a). Lewis himself was well aware of the problem.
He thought that the apparent symmetry is broken by what he describes as
overdetermination of the past by the future (Lewis 1979). This idea has a num-
ber of severe problems to be discussed in sections 7 and 8 below. Let us,
however, first review another argument against backward causation from

3See Frisch (2014, Ch.5) for a detailed discussion and criticism of Russell’s scepticism
about causation, including also Neo-Russellian arguments against causation.
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the perspective of the interventionist account.

4 The Bilking Argument

In this section, we explain the bilking argument against backward causa-
tion. This means we show that the following propositions entail a contra-
diction:

(1) Itis impossible to change the past.
(2) There are cases of backward causation.

(3) Causation is understood in the sense of Woodward’s interventionist
account.

Suppose C is a direct cause of E. Further, suppose for contradiction, that
E precedes C in our actual world. What happens if we intervene on C—
relative to E—so that C does not occur? Whatever formal framework
we choose to describe these changes—possible worlds or sets of value
assignments—we have to conclude that E remains unaffected by the inter-
vention on C because it’s impossible to change the past. As we have seen
in the previous chapter, the interventionist approach to causation must ad-
here to the principle that it is impossible to change the past. If changes
of the past were to be admitted as possible consequences of hypothetical
interventions, the interventionist account would become indeterminate as
regards the direction of causation.

However, if we bring to bear other elements of the interventionist account
of causation, we obtain the opposite result. Using the assumption that C
is a direct cause of E, we can infer from (M) that setting the variable C to
false—by an intervention I relative to E—changes the value of E to false
such that this event does not occur anymore. Thus we have obtained a
contradiction.

This proof by contradiction is intended to give the gist of the bilking
argument. The original argument against backward causation by Black
(1956) may be captured by the following causal model. Let I be the inter-
vention variable by means of which we intervene on C. The intervention I
sets the variable C to the value false if E occurs, and to the value true if E
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does not occur. In more formal terms, we have the following causal graph
and causal model M:

(E—©
0

Figure 72: Causal graph and causal model of the bilking argument
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We can easily show that M is semantically inconsistent, that is, there is no
value assignment to the variables such that all structural equations are true.
Suppose E is true. By I = E, I must be true as well then. Using C = -1,
we can infer from this that C is false. C being false and E = C imply that
E is false. Contradiction. Now, let us assume that E is false. By the same
line of reasoning, we can show that E is true then. Again, we have obtained
a contradiction. Since E must be either true or false, we have thus shown
that there is no assignment of values such that all structural equations of
the causal model are true. Notice that M is a cyclic causal model. There is
a directed path from E to E. Unlike acyclic causal models, a cyclic causal
model may not have a solution (Halpern 2000).

Notice that the bilking intervention satisfies all formal requirements for an
intervention, as defined by (IV). I certainly causes C. Also, I trivially acts
as a switch on all the other variables that cause C. Further, any directed
path from I to E goes through C. Finally, I is independent of any variable Z
that causes E and that is on a directed path that does not go through C. This
holds true simply because there is no such variable Z. Hence, conditions
I1 to I4 of (IV) are satisfied for the bilking intervention we envision. It
is therefore a proper intervention in the sense of Woodward’s account of
causation.

We must wonder whether an analogous problem arises for temporally
forward-directed causal relations. Suppose C causes E, and C precedes E.
Further, suppose we intervene on C such that it is set to occur iff E does not
occur. In the causal model that describes such an intervention, there must
be a directed path such that one edge of this path is backward-directed in
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time. Hence, the intervention envisioned requires backward causation. So
we can blame the inconsistency arising from bilking interventions on the
admission of backward causation. To put it more carefully, admitting back-
ward and forward causation in one and the same causal model allows for
the construction of inconsistent causal models.

5 Ways out of the Bilking Argument

We have shown that the bilking argument against backward causation goes
through if we adopt Woodward'’s interventionist account of causation. This
is not to say that any interventionist account rules out backward causation.
Price (1996) has given the bilking argument careful consideration, and yet
tried to find a way out of the apparent consequences of this argument. We
outline his strategy, and point out two problems, one of which is acknowl-
edged by Price himself.

Price (1996, Ch.7) distinguishes between two semantic conventions for the
evaluation of interventionist counterfactuals. One says that we hold the
past fixed when evaluating whether or not an interventionist counterfac-
tual is true. This convention rules out backward causation in an interven-
tionist account of causation by the bilking argument. Alternatively, we may
hold the past fixed, but only to the extent it is epistemically accessible to
us when evaluating an interventionist counterfactual. This weaker seman-
tic convention opens up a loophole for backward causation. The bilking
argument can be blocked if certain epistemic constraints are imposed on
which interventions are admissible. More concretely, if the past effect is not
known to us at time f, we cannot intervene on the cause at time t such that
the effect would disappear. Without such epistemic constraints on inter-
ventions, the bilking argument goes through, as Price (1996, p. 180) himself
has emphasized.

The next step is to show that we encounter phenomena in quantum me-
chanics such that past events are, in principle, epistemically inaccessible
and certain measurements may be construed as causally influencing the
past. In such phenomena two particles are emitted from a source S and
some property P of one particle is measured at a time after the emission.
Quantum mechanics predicts that the outcome of this measurement deter-
mines the outcome of measuring P for the other particle. This prediction
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has been confirmed experimentally. The result is surprising since the two
particles are spatially separated so that no signal, travelling at the speed of
light, could transmit any information from one measurement to the other.
It is therefore difficult to conceive of a causal process going from one mea-
surement to the other. This type of phenomenon is referred to as quantum
entanglement.

Yet, non-standard accounts of quantum mechanics, known as hidden vari-
ables theories, open up the possibility of a causal interpretation along the
following lines. The first measurement of P causally determines hidden
variables concerning the source S at the time of emission. Then the val-
ues of these hidden variables causally determine the outcome of the sec-
ond measurement of P, which concerns the other particle. The first leg of
this causal process is backward-directed in time, while the second leg is
forward-directed. The details are complex, and we do not attempt to give
any introduction into quantum mechanics here. To appreciate our critical
note to follow, it suffices to bear in mind that epistemic inaccessibility of the
values of hidden variables—at the time when these variables assume re-
spective values—is crucial for a coherent interpretation of backward causa-
tion in quantum mechanics. In the present example, it is certain properties
of the source S—at the time of emitting two particles—which are captured
by hidden variables. In Figure 73, M and M’ stand for the measurements
of property P for the two particles respectively, and S for the source from
which the two particles are emitted:

Figure 73: Backward causation in a scenario of quantum entanglement

The adumbrated account of backward causation severely limits the type of
empirical evidence that can possibly be obtained for instances of backward
causation. For this to be seen, notice that when testing for causation be-
tween X and Y by an intervention on X, we think that some changes in X



CHAPTER 10. BACKWARD CAUSATION 248

are accompanied with changes in Y. Now, if the past effect Y (the values
of hidden variables concerning the source S) is inaccessible to us without
measuring X (property P of one of the emitted particles), it is strictly impos-
sible for us to observe any changes in Y due to an intervention on X. This
means that we cannot observe any actual changes of the values of hidden
variables concerning the source S, not even by using highly sophisticated
measurement devices. Price is well aware of this problem, and empha-
sizes that arguments in favour of backward causation have to rely on holis-
tic principles of theory choice, such as simplicity, elegance, and symmetry
(1996, p. 180). Evidence for backward causation cannot have the form that
changes in the presumed cause make us observe changes in the putative
effect, not even indirectly.

More specifically, Price (1996, Ch.9) argues that a combination of hidden
variables and backward causation allows us to hold on to certain princi-
ples of locality when describing physical reality in quantum mechanics.
Applied to the phenomenon of quantum entanglement, locality means that
the outcomes of the two measurements may be understood in terms of in-
dividual properties of the two particles and the source of their emission. By
contrast, the entanglement of the two measurement results cannot be con-
strued as caused by individual properties of the two particles if causation
is always forward-directed in time, even if hidden variables are used. This
result follows from Bell’s theorem.*

But even if we accept extraordinarily holistic limitations on arguments in
favour of backward causation, there remains one more problem to be ad-
dressed. The problem arises from the following question: which inter-
ventions are admissible in an interventionist account of causation? Wood-
ward discusses this question at greater length, eventually suggesting a no-
tion of intervention which is maximally liberal and not constrained by the
limitations of human agents or the laws of physics:

“For a more detailed account of quantum entanglements in the context of backward
causation, the reader is referred to Price (1996, Ch. 8 and 9), Dowe (1997), Hausman (1998,
Ch.12.6), and Friederich and Evans (2019). The phenomenon of quantum entanglement
seems to constitute the most powerful case for an interpretation in terms of backward cau-
sation (Dowe 1996, p.228). But there are other phenomena in physics for which an inter-
pretation in terms of backward causation has been explored. Faye (2021, Sect. 4) gives an
overview. For a more technical discussion of hidden variables theories, see, e.g., Appendix
F in Galindo and Pascual (1990).
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Commitment to a manipulability theory leads unavoidably to
use of counterfactuals concerning what would happen under
conditions that may involve violations of physical law. The rea-
son for this is simply that any plausible version of a manipula-
bility theory must rely on something like the notion of an inter-
vention, and it may be that, for some causal claims, there are no
physically possible processes that are sufficiently fine-grained
or surgical to qualify as interventions. (Woodward 2003, p. 132)

In line with this liberalized understanding of interventions, Andreas and
Casini (2019) made a more concrete case for interventions which violate
laws of physics.

The need for physically impossible interventions leads to the following
problem for an interventionist approach to backward causation: why
should we refrain from hypothetical interventions on hidden variables?
Such interventions are physically impossible, but so are other interven-
tions which are needed in a comprehensive account of causation. Why
should hypothetical interventions be constrained by what a human agent
can know about hidden variables? Why is it not admissible to ask what
happens if we had knowledge of hidden variables and used this knowl-
edge to intervene on the presumed cause in a specific way?

From the perspective of Woodward'’s interventionist account, we have rea-
son to admit bilking interventions. Woodward develops his intervention-
ist account in such a manner that the human agent drops out in the end.
Agency is not constitutive of causality (Woodward 2003, p.126). This im-
plies that interventionist conditionals are not constrained by epistemic lim-
itations of human agents. Unlike Woodward, Menzies and Price (1993) re-
tain the human agent in their interventionist approach to causation. At the
same time, Price (2017, Sect.4) points out that his interventionist account
needs to include humanly impossible interventions inasmuch as Wood-
ward’s does. So, it remains an open problem on what grounds we should
exclude interventions on hidden variables. Recall that one needs to ex-
clude such interventions in order to block the bilking argument for causal
relations among hidden variables. The envisioned loophole for backward
causation closes if interventions on hidden variables are admitted.

One word on Dummett’s subtle discussion of backward causation and the
bilking argument is in order. Dummett (1964) aims to answer the following
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question: are there circumstances in which it can be rational to believe there
is backward causation? His answer is yes, with one qualification: it must
not be possible to know about the past effect without having intentions to
bring it about or to prevent it. This implies that knowledge concerning
the occurrence of the past effect is not available at the time of performing
actions that are conceived to cause this effect. As just explained, Price (1996,
chs.7-9) has shown how hidden variable theories in quantum mechanics
may be used to pursue this loophole for backward causation. At the same
time, it should be noted that Dummett thinks that our notion of past rules
out backward causation:

The difference between past and future lies in this: that we think
that, of any past event, it is in principle possible for me to know
whether or not it took place independently of my present in-
tentions; whereas, for many types of future event, we should
admit that we are never going to be in a position to have such
knowledge independently of our intentions. (Dummett 1964,
p-357)

Thereby, Dummett says that our conception of past violates a precondition
for backward causation. Dummett’s discussion of backward causation thus
remains dialectical. He delivers arguments for both the proponent and the
opponent to backward causation. On the one hand, Dummett (1964) agrees
with the critic of backward causation, who holds that we can rule out this
type of causation on conceptual grounds. On the other hand, he outlines a
conceptual change of our notion of past which may open up the possibility
of backward causation.

Gebharter et al. (2019, p.132n) try to refute the bilking argument from an
interventionist perspective within just a single paragraph. The case for de-
terministic backward causation goes as follows: if we prevent the occur-
rence of the cause—while the past effect already occurred—it remains true
that the past effect occurred. This seems to contradict the intervention-
ist account, according to which interventions on the presumed cause must
affect the putative effect. Gebharter et al. (2019), by contrast, suggest in-
ferring that ‘another cause’ of the past effect is (or was) present, which we
have not been aware of and whose occurrence we did not prevent. In other
words, we should conclude that we are in a scenario of overdetermination.
This defence of backward causation is surprising. For it is well known
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that a counterfactual interventionist account of causation needs refinement
when applied to scenarios of overdetermination. If we test for causation be-
tween X and Y in a scenario of overdetermination, overdetermining causes
other than X must be set to non-actual values (see, e.g., Halpern and Pearl
(2005)). Applied to the bilking scenario, this means that all overdetermin-
ing actual causes of the past effect must be intervened on when we test for
causation between cause and effect. Otherwise, the interventionist account
has no solution to the problem of overdetermination.

6 The Original Fork Theory

Reichenbach’s fork theory aims to define the direction of causation using
probabilistic and temporal information about event types. It was devel-
oped in his seminal The Direction of Time (1956). Reichenbach shows there
that the direction of some causal relations can be derived from statistics,
physics, and empirical observations. But there remain causal relations
whose direction is determined by the Humean convention. We will show
that this convention remains in place for a large set of causal relations.
Backward causation is explicitly excluded.

The original fork theory by Reichenbach has been highly influential for
approaches to causation which try to make do without the Humean con-
vention or which deviate from this convention in one way or other (Dowe
1996, Papineau 1992, Price 1996, Spirtes et al. 1993). Some of these more
recent approaches make room for backward causation (Dowe 1996, Price
1996). When developing his overdetermination thesis, Lewis (1979) does
not explicitly draw on Reichenbach (1956), but this thesis turns out to be a
deterministic variant of the original fork theory. For all these reasons, it is
worth studying the original fork theory in greater detail.

The notion of a conjunctive fork is closely related to that of a probabilistic
common cause. The idea is that the cause forms the head of a fork and the
two causal relations form the tines, as depicted by Figure 74:
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Figure 74: Fork with a common cause

The concept of conjunctive fork is defined as follows (Reichenbach 1956,
p-159):

Definition 31. Conjunctive fork
Let A, B, and C be types of events. A, B, and C form a conjunctive fork with
the head event C—ACB is a conjunctive fork, for short—iff

A&B|C)=P(A|C)-P(B|C)

P(
P(A&B | C)=P(A|C)-P(B|C)
P(A|C)>P(A|C)

P(

(1)
(2)
)
(4) P(B|C) > P(B|C).

Conditions (1) and (2) say that A and B are probabilistically independent
conditional upon C and C. On assumption of C, the occurrence of A does
not make the occurrence of B more likely or less likely. Nor does B make
the occurrence of A more likely or less likely on this assumption. Likewise
for the assumption that C does not occur, which is abbreviated by C (the
complement of C). Conditions (1) and (2) are taken to imply that there
cannot be a direct causal relation between A and B. Conditions (3) and (4)
define some concept of probability raising. Condition (3) says that C raises
the probability of A, or the absence of C lowers the probability of A, or
both. In other words, A is more likely to occur when we know that C than

it is when we know that not C. Condition (4) makes the corresponding
assertion for B.

This concept of a conjunctive fork is insufficient to capture probabilistic
common causes, though. For a causal chain of the following type satisfies
conditions (1) to (4) as well:



CHAPTER 10. BACKWARD CAUSATION 253

O—O—@

Figure 75: Causal chain

In such a chain, A and B are probabilistically independent conditional upon
C and not C. And C raises the probability of both A and B in the sense of
conditions (3) and (4). Reichenbach himself was well aware of this prob-
lem.”

Reichenbach’s solution to this problem is twofold. First, he defines a prob-
abilistic notion of between. While this notion is defined without reference to
any causal notions, it has an intended causal meaning: C is between A and
B iff there is a direct causal relation between C and A and one between C
and B. In other words, C is between A and B iff there is an edge between A
and C and an edge between C and B in the causal graph.

Second, Reichenbach takes recourse to temporal relations among events.
More specifically, he makes the following two assumptions. Common
causes have effects which approximately coincide in the sense that they
occur together in a small spatiotemporal region. Likewise, common ef-
fects have causes which approximately coincide. He emphasizes that some
principle of local comparability of time order is needed in his account of the
direction of causation (p. 194). This is not to say that all effects of a common

5See Reichenbach (1956, p.189), where the problem is explicitly acknowledged. Why
did Reichenbach define the notion of conjunctive fork by conditions (1) to (4) in the first
place, given he knew that causal chains satisfy these conditions as well? When discussing
the probabilistic properties of common causes and common effects, Reichenbach makes the
assumption explicit that the tine events A and B are simultaneous: ‘The statistical relation-
ships which two simultaneous events have, on the one hand, to a common cause, and, on the
other hand, to a common effect, can be represented by the schema of Figure 23.” (p.158,
emphasis added) Figure 23 in Reichenbach (1956) shows two simultaneous events with a
common cause and a common effect. Reichenbach then goes on to focus on the common
cause and the relations to its effects. On the next page, the concept of a conjunctive fork is
defined, albeit not in a maximally explicit manner. One reading of Reichenbach’s terminol-
ogy is that the simultaneity of the tine events within a fork remains an implicit assumption
when the notion of a conjunctive fork is defined. Thereby, causal chains are excluded from
qualifying as conjunctive fork. But there are also passages where the notion of conjunctive
fork is used in a wider sense, which may well include causal chains: ‘For this reason, we
shall say that relations (5)—(8) [i.e, (1) to (4) in our definition] define a conjunctive fork, that
is, a fork which makes the conjunction of two events A and B more frequent than it would
be for independent events.” (Reichenbach 1956, p. 159)
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cause coincide. Such effects may well be spatially and temporally separated
from one another. Even then, Reichenbach argues, we can recognize in-
termediate events between the common cause and its effects, respectively,
which do coincide. To be more precise, if A and B are effects of a common
cause which do not coincide, then there are intermediate events A’ and B’
which do. A’ is intermediate between C and A, and B’ between C and B.°

So far, we have three types of information in order to determine the causal
graph for a set of event types: (i) the probabilistic concept of between, (ii)
the probabilistic concept of conjunctive fork, (iii) and temporal information
about local coincidences. These three ingredients define what Reichenbach
calls a net with a lineal order (p.197). To understand what he means by such
anet, let us begin with a simple example (cf. Figure 28 on p. 181 in Reichen-
bach (1956)):

Figure 76: Combination of an open fork with a closed fork

As a first approximation, a lineally ordered net may be described as an

6See Reichenbach (1956, Ch. 22) for details.
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undirected causal graph. The edges stand for direct causal relations, but
we do not know in which direction causation goes. Take Figure 76 as an
example, which combines an open fork with a closed fork. How do we
assign a direction of causation to the edges of the net?

Based on broadly empirical observations and assuming our customary un-
derstanding of time direction, Reichenbach claims that we have conjunctive
forks open to the future, but no such forks which are open to the past. A
fork ACB is open to the future iff the two tine events A and B are temporally
later than C, but there is no event E such that AEB form a conjunctive fork
and E is temporally later than A and B. This observation suggests the fol-
lowing definition of the direction of time: ‘In a conjunctive fork ACB which
is open to one side, C is earlier than A or B’ (Reichenbach 1956, p. 162). This
definition enables us to assign a direction of time to the edges between C
and A, and C and B in the net of Figure 76. Using this assignment, a direc-
tion of causation is assigned to the undirected edges between C and A, and
C and B too. Thus we obtain the net of Figure 77:

Figure 77: Combination of an open fork with a closed fork, where a direc-
tion is assigned to the edges in the open fork.
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It is not entirely clear, which assignment comes first—that of time or that of
causation. In any case, the direction of time and the direction of causation
are aligned with one another such that the Humean convention is satisfied.

This definition of time in terms of open conjunctive forks complements the
statistical definition of time direction, according to which the arrow of time
is aligned with the direction of growth of entropy. That is, if the entropy of
a system changes from a lower state to a higher, the lower state precedes the
higher. Entropy grows in the universe and the various subsystems thereof.
Let’s call this definition entropy time. Furthermore, Reichenbach tries to
show—for statistically irreversible processes—that the direction of causa-
tion is aligned with the direction of entropy time (1956, Part III).

We are almost done. The last element in Reichenbach’s account of the di-
rection of causation is the following principle: once we have directed a
single edge in the net of events (defined by relations of between, conjunctive
forks, and approximate coincidences), all the other edges are directed as
well. This is what Reichenbach means by the notion of a lineally ordered net:

the causal net constructed statistically has acquired the same
properties as the causal net of classical mechanics: it is ordered
as a whole. The net thus possesses a lineal order. This means
that, if a time direction is assigned to one causal line, a direc-
tion results for every line. (Reichenbach (1956, p. 197), emphasis
added)

Why can we determine the direction of all edges on the basis of assigning
a temporal direction to a single edge? So far, we have established the fol-
lowing claims: (i) the direction of causation is aligned with the direction
of entropy time. (ii) There are no conjunctive forks open to the past in the
sense of entropy time. (iii) Entropy time is understood such that entropy
grows over time: the states with higher entropy are later than states with
lower entropy. (i), (ii), and (iii) imply that all open conjunctive forks ACB
of the net are such that the head event C is a cause of A and B. Thereby, we
have directed all edges of all open forks.

However, not all edges of the net form a tine of an open fork, as is exem-
plified by the net of Figure 77. Why does the directedness of open forks
allow us to assign a direction to the other edges in the net? To answer this
question, it is crucial to note that a lineally ordered net is not merely an
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undirected graph in which the edges stand for causal relations. Such a net
rather contains information about temporal relations among events. More
specifically, a given lineally ordered net allows for only two interpretations
of time order. These interpretations may be represented by two directed
acyclic graphs Gy and G;. Gy and G; have the following properties. First, if
there is a directed edge from A to B in Gy, then there is a directed edge from
B to A in G. And vice versa. No graph contains any cycles. In particular,
there are no nodes A and B such that there is a directed edge from A to B
and vice versa in one and the same graph. Graph-theoretically, a net with
a lineal order is a pair of two directed graphs which have said properties.

Reichenbach represents the two temporal interpretations of a lineally or-
dered net graphically, but not graph-theoretically. Suppose there is an edge
between A and B such that A is closer to the top of the page (on which the
net is depicted) than B. Then A is temporally later than B or temporally
earlier. Moreover, all pairs (AB) and (CB) of edges in the net have the fol-
lowing property: if A is higher up on the page than B and C higher up than
D, then either A is later than B and C is later than D, or B is later than A
and D is later than C. It is then excluded, for example, that A is later than B
and D later than C. This is, we suggest, what Reichenbach means by saying
that the net is ordered as a whole: once one edge is assigned a direction of
time and causation, all the other edges are directed as well.

In sum, causation and time either go from the bottom to the top of the page,
or vice versa. Put more technically, the diagram of a lineally ordered net has
the following property: the direction of time is either parallel to the direc-
tion from the bottom to the top of the page or antiparallel to this direction.
Likewise for the direction of causation. The main reason for this interpre-
tation is as follows. Suppose we understand the notion of net with lineal
order graph-theoretically such that the net is given by a single undirected
graph. That is, all edges of the net are undirected, and we have no infor-
mation about temporal relations among events. Then it is simply wrong
to say that assigning a direction to one edge determines the direction of all
the other edges. This is even wrong if we assume that all edges must point
in the same direction after the assignment. For the concept of sameness of
direction is not well defined if the net is understood as a single undirected

graph.
Our interpretation is furthermore confirmed by the fact that all diagrams
of directed causal graphs in Reichenbach (1956) conform to the convention
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that the events higher up in the diagram are temporally later than the lower
events. Notably, there are no diagrams of causal graphs with a directed
edge between A and B such that the edge is horizontal. Information about
temporal relations among events can be obtained via relations of approxi-
mate coincidence, as indicated above. Suppose there is an edge between C
and A, C and B, and C and D. Further, A and B coincide or there are inter-
mediate events—intermediate between C and A and intermediate between
C and B—which coincide, or both. However, A and D do not coincide, and
there are no intermediate events—intermediate between C and A and in-
termediate between C and D—which do. Hence, either A and B are higher
up than C and C is higher up than D, or the other way around (A and B are
lower than C and C is lower than D). These considerations can be extended
to the whole net such that the direction from the bottom to the top of the
page represents the direction of time or the opposite direction of time.

We have thus answered the question of how those edges are directed which
are not tines of an open fork. These edges must be aligned with the edges
which are tines of open forks. Given a lineally ordered net, alignment can
only mean that the edges not in open forks have the same temporal direc-
tion as the edges in open forks. For example, this convention of alignment
enables us to assign a direction of causation to all edges in the net of Figure
77. First, by the above definition of the direction of time in terms of open
forks, we know that C is prior to A and B. Then, by the convention that
edges in open and closed forks need to be aligned, we can assign a direc-
tion of time to the other edges. The direction of time immediately gives
us the direction of causation. The two assignments are represented by the
following figure:
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Figure 78: Combination of an open fork with a closed fork, where a direc-
tion is assigned to all edges.

Note that Reichenbach’s alignment convention makes use of the Humean
convention to assign a direction of causation to edges which are not in an
open fork. Reichenbach himself says that we confer a direction of causa-
tion on reversible processes by the convention that this direction is aligned
with the causal direction of irreversible processes and open forks (p. 156).
Moreover, he holds that our world is such that causation is always forward-
directed in time or always backward-directed in time.” Once entropy time
and fork time are established in the above manner, we obtain that causa-
tion is always forward-directed in time. There is no loophole for backward
causation. Even simultaneous causation is difficult to conceive.

The problem of how to assign a direction to edges which are not in open
forks turns out trouble for more recent accounts of causation. A case in
point is Lewis’s counterfactual account to be discussed in the next two sec-

7See Reichenbach (1956, pp.35-9, p. 153n). This is very much in line with our claim that
the notion of lineal order is applicable only if we do not have both forward and backward
causation in one and the same causal scenario.
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tions.

7 The Counterfactual Approach

Using his counterfactual approach to causation, Lewis (1973a, 1979) tried
to derive the direction of causation from the semantics of counterfactuals
themselves. If successful, this derivation achieves two objectives. First,
Lewis can explain why causation is almost always, if not outright, forward-
directed in time. Second, exceptions from forward-directed causation be-
come conceptually possible. The project is even more ambitious and heroic
than Hume’s is. The objective is to give a reductive analysis of causation
without relying on the asymmetry of time.

The notion of backtracking counterfactual plays a paramount role in
Lewis’s reductive analysis. What is a backtracking counterfactual? There
are at least two readings: a causal and a temporal one. On the causal read-
ing, a backtracking counterfactual goes, by definition, against the direction
of causation. On the temporal reading, such a counterfactual goes, by def-
inition, against the direction of time. It’s far from easy to figure out which
of the two readings is correct, specifically since the familiar causal relations
are all forward-directed in time. Let C be a cause of E such that C precedes
E. Then the counterfactual ‘had E not occurred, C would not have occurred
either’ is backtracking in both the causal and the temporal sense. ‘Had C
not occurred, E would not have occurred either” is non-backtracking in
both the causal and the temporal sense of backtracking.

We tried to make a case for the temporal reading of backtracking, but have
to admit that there are also passages in Lewis (1979) which support the
causal reading. The problem is that Lewis (1979) often uses both causal
and temporal notions in order to explain backtracking. If backtracking con-
cerns, by definition, the direction of causation and not the direction of time,
it would have been helpful had Lewis explained the distinction without
references to the temporal relation between cause and effect. If backtrack-
ing concerns, by definition, the direction of time and not the direction of
causation, it would have been helpful had Lewis explained the distinction
without references to causal relations. After all, it is a matter of convention
how we understand the notion of a backtracking counterfactual. To mini-
mize confusion, we suggest distinguishing more clearly between causally
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and temporally backtracking counterfactuals.

Lewis tried to show that causally backtracking counterfactuals are always
false at our world, given his proposed semantics of counterfactuals and a
suitable account of similarity among worlds. To understand his reasoning,
let us review very briefly the basic elements of the semantics of variably
strict conditionals by Lewis (1973b). Suppose A and B are false at world
w. Let’s call a possible world where a is true an a-world. A counterfactual
A 0= B is true at a possible world w just in case some A A B-world is more
similar to w than any A A —B-world, if there are any A-worlds. If there
are no A-worlds, the counterfactual A [}—= B is vacuously true. If the set
of possible worlds is finite, we can say that A [J—= B is true at w iff all A-
worlds which are most similar to w are B-worlds, or there are no A-worlds.
This semantics is based on a similarity ordering among possible worlds.
Lewis (1979, p.472) suggests imposing the following constraints on this
ordering:

(1) It is of the first importance to avoid big, widespread, diverse viola-
tions of law.

(2) Itis of the second importance to maximize the spatiotemporal region
throughout which perfect match of particular fact prevails.

(3) It is of the third importance to avoid even small, localized, simple
violations of law.

(4) Itis of little or no importance to secure approximate similarity of par-
ticular fact, even in matters that concern us greatly.

These constraints are motivated by several objectives. First, agreement
with our counterfactual judgements when the formal semantics is applied
to counterfactuals in natural language. Second, eliminating some cases of
vagueness concerning the meaning of counterfactuals in natural language.
Third, a plausible theory of causation when the similarity ordering is used
to complement Lewis’s (1973a) analysis of causation.

So far, everything is symmetric. We have no reason to think that counter-
factuals going against the direction of time and causation come out false
on Lewis’s semantics. The symmetry is broken by the overdetermination
thesis: the past is overdetermined by the future—at least in our world and
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perhaps with a few exceptions. The exceptions are supposed to make room
for backward causation, as we shall see shortly. Overdetermination of the
past may well be understood in analogy to familiar cases of causal overde-
termination, which are forward-directed. In these familiar cases, several
events Cy,...,C, are individually sufficient to bring about a certain effect
E. Recall some stock example of overdetermination: several soldiers shoot
a prisoner, and each bullet is fatal. In these familiar scenarios of overdeter-
mination, there are several events C; such that C; determines that a future
event E occurs, given the laws governing our world. In cases of overde-
termination of the past, by contrast, we have several events E; such that
each E; determines the occurrence of a prior event C, given the laws of our
world. This type of determination must not be understood causally, but
rather nomologically. Using the convention from Reichenbach (1956) that
the direction of time goes from the bottom to the top of the page, we can
graphically depict the two types of overdetermination by the following fig-

ures:
Figure 79: Overdetermination Figure 80: Overdetermination
of the past of an effect E

Figure 79 is a schematic representation of the temporal and causal rela-
tions of overdetermination of the past. It is assumed that the events E;,
E,, and Ej, individually, allow us to infer back to the past cause C. Figure
80, by contrast, represents the temporal and causal relations in the famil-
iar cases of overdetermination, given that C;, C;, and Cs are individually
sufficient to bring about E. The figures assume that it is single events—
as opposed to conjunctions of events—which determine the occurrence of
another event. This is in line with the paradigmatic examples adduced by
Lewis for the overdetermination thesis. The assumption suggests itself if
we read Lewis’s approach to the direction of causation as fork theory. Be-
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low we will also look at conjunctive scenarios in the context of the overde-
termination thesis.®

Now, Lewis thinks that overdetermination of the past is prevalent, if not
omnipresent, while overdetermination of a future event is rare. He moti-
vates this thesis of overdetermination with reference to the physics of wave
propagation. The source of a wave is given by an event within a relatively
small and well-confined spatiotemporal area. Take a stone dropping into a
pond or emission of light by a fire. The waves originate from the source and
spread themselves through a relatively large area in spacetime. There are
numerous events later than the original creation of the wave from which
we can infer that there is a certain source with specific properties, such as
wave length and frequency.

In fact, the overdetermination thesis, if correct, allows us to explain why
causation is predominantly forward-directed in time. Suppose C is a cause
of several events E; (1 < i < n), which are temporally later. Since causation
is asymmetric by assumption, none of the events E; (1 < i < n) is a cause of
C. Further, each E; determines—together with the laws—that C occurred.
The occurrence of C is not overdetermined by past events, though. None
of the effects E; (1 < i < n) is overdetermined. Let us now apply the
simple counterfactual test for causation to this scenario, setting aside chains
of counterfactual dependence for simplicity. Then —-C (3= —E; must come
out true for all i (1 < i < n). This is quite plausible since avoidance of
miracles is crucial when it comes to assessing similarity among possible
worlds. Since C is not overdetermined by a past event, roughly just one
miracle is needed to deviate from the actual world to a world where C is
false. In such a possible world, none of the events E; (1 < i < n) should
occur if we want to avoid further miracles.

What would have happened if some event E; (1 < i < n) had not occurred?
As regards the past of E; we have at least three principal options. First,
assuming a miracle shortly before E; occurs such that C still occurs in the
corresponding possible world. Let’s call this set of possible worlds W;. Sec-
ond, assuming a miracle shortly before C such that C does not occur, while
the events E; other than E; still occur. Here, the events E; (1 < j < n,j # i)
occur miraculously since they are uncaused. Let’s call the set of these pos-

8In reading Lewis’s (1979) proposal as fork theory, we follow Price (1996, Ch.6) and
Papineau (1992).
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sible worlds W,. The third option is to assume a miracle shortly before C
such that neither C nor any of the events E; (1 <i < n)occurs. Let’s refer to
the corresponding set of possible worlds by W3. Clearly, the members of W,
are most similar to the actual world, provided our assessment of similarity
is confined to the set {C, Ey, ..., E, } of events. The members of W, involve
more miracles than the members of W;. Also, the worlds of W, agree with
the actual world completely as regards particular fact. The worlds in W3 do
not differ from those in W as regards miracles, but the worlds in W; agree
better with the actual world as regards particular fact than the worlds in
W3 do. This gives us reason to deny that the counterfactual —E; (3= —C is
true, as it should be. After all, the counterfactual is backtracking in both
the temporal and the causal sense.

In sum, the fork structure of causal relations leads to an asymmetry of mir-
acles. If we counterfactually assume that the head event of the fork had not
occurred, we should hold that none of the tine events would have occurred
either. For a number of miracles are needed if the tine events were to occur
without the head event. Hence, we have reason to think that the counter-
factual ‘had the head event not occurred, the tine events would not have
occurred either” is true. By contrast, if we counterfactually assume that a
tine event had not occurred, we should hold that the head event would
still have occurred. For only a small miracle is needed in order to maintain
complete agreement about particular fact—as regards the past of the tine
event—between the actual world and the possible worlds of the counter-
factual assumption that the tine event had not occurred. If we can achieve
complete match of particular fact as regards a large temporal interval by
just one small miracle, then this is ‘better” than complete avoidance of mir-
acles at the price of large disagreement about particular fact. Hence, we
have reason to think that the counterfactual ‘had a tine event not occurred,
the head event would not have occurred either’ is false. Lewis’s counter-
factual account of causation tells us that the head event is a cause of the
tine events, but not vice versa.

For Lewis’s overall account of causation to work, it is crucial that small
miracles are tolerable, but big and widespread miracles are not. The latter
type of miracles are referred to as big, widespread, diverse violations of law
(Lewis 1979, p.472). Suppose Lewis were to say that, for the assessment of
similarity, it is of the first importance to avoid violations of law outright.
Then a possible world with a small miracle would always be less similar to
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the actual world than any possible world without miracles at all. A large
number of (causally and temporally) backtracking counterfactuals would
come out true then. There would be no asymmetry of causation.

Lewis’s theory of causation succeeds in making room for the conceptual
possibility of backward causation, at least on a charitable reading. Overde-
termination of the past by the future may be violated locally. If so, we seem
to have a case of backward causation. Of course, the question arises of
how to distinguish backward causation from the familiar cases of forward-
directed overdetermination. But there is at least some prospect of a coher-
ent understanding of forward-directed causation which allows for excep-
tions in the form of backward causation.

8 Problems of the Counterfactual Approach

If causation has a fork structure, we must wonder whether forks are om-
nipresent. Is there a unique fork for every cause such that the head event
causes the tine events, while every single tine event determines that the
head event occurs—given the laws of our world? Put in simpler terms, is
every cause the head of a fork? Lewis (1979) himself does not discuss this
question. Papineau (1992, p.239), however, maintains we should under-
stand Lewis’s fork theory in precisely this way:

given any event C, in one direction in time there will be many
different sequences each of a type which is generally found with
C, while in the other direction in time there will only be one
such sequence. And then we can say that the former sequences
of events are the effects of C, and the latter sequences its causes.
(Papineau (1992, p.239), our emphasis)

On this reading forks are omnipresent: any cause is the head of some fork.
We show that Papineau’s reading is correct. Every causal relation must
be embedded in a corresponding fork if we accept Lewis’s counterfactual
account of causation, the formal semantics of counterfactuals, and the un-
derlying similarity ordering of possible worlds. Suppose, for contradiction,
we have a causal structure depicted by Figure 81:
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Figure 81: Two forks connected by single directed edge

By assumption, B causes C, and the causal relation between B and C is not
embedded in any fork. Let us apply the counterfactual test to this causal
relation. What would have happened if B had not occurred? To answer
this question, we must look at the —B-worlds which are most similar to
the actual world.? Given the causal structure of the scenario, it’s obvious
which of the =B-worlds are to come out as closest to the actual world. To
get the causal structure right, the —B-worlds closest to the actual world
are such that a small miracle occurs shortly before B but no miracle occurs
shortly thereafter. The problem is that Lewis’s constraints on the similar-
ity ordering—explained in the above section—do not suffice to obtain this
result. For this to be seen, consider a possible world w; where just one
miracle occurs shortly before the absence =B and the future unfolds ac-
cording to the laws. To be precise, there is a miracle in w; shortly before
the time point at which we expect B to occur from the perspective of the

9We tacitly assume that only a finite number of possible worlds is considered, which
simplifies the semantics of counterfactuals as indicated in the above section. This assump-
tion is justified since we consider only a finite number of events. Even if the assumption is
not justified, the following considerations are easy to translate to the proper semantics of
counterfactuals for an infinite number of possible worlds.
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actual world. Further, consider a possible world w, in which a miracle oc-
curs shortly before the absence —B and shortly thereafter so that C occurs
after all. The two possible worlds w; and w, compete for similarity. Which
possible world wins the competition?

Let wp be the actual world. Clearly, neither w; nor w, exhibits big,
widespread, diverse violations of law. So the first criterion of similarity is sat-
isfied by w; and w, equally well. Further, there is almost complete and
perfect match of particular fact between w, and wy. But there is less per-
fect match of particular fact between w; and wy. This is confirmed by how
Lewis (1979) himself applies the similarity criteria to a concrete example,
as we will see shortly. The third criterion of similarity—to avoid even small,
localized, simple violations of law—is satisfied by w; to a lesser extent than w;
since there is just one miracle in w; but two in w,. The fourth criterion—to
secure approximate similarity of particular fact—is not really applicable since
our scenario is discrete. Even if it was applicable, this criterion would not
be decisive since the two worlds do not satisfy all of the higher criteria
equally well.

The surprising result is that the world with two miracles—one shortly be-
fore and another shortly after the absence =B—wins the competition. w, is
more similar to the actual world than w; since it exhibits a larger spatiotem-
poral region with perfect match of particular fact, while neither world ex-
hibits big, widespread, diverse violations of law. This, however, implies
that the counterfactual test fails to capture that B causes C, and so it also
fails to capture that B is a cause of F, G, and H. Notice that even a tie be-
tween w; and w, would be a severe problem for Lewis. To capture that B
causes C, Lewis has to show that w; is more similar than w,. Thus we have
received a contradiction from the assumption that not all causal relations
are embedded in a fork.

It is important to note that our assessment of similarity concerning w; and
wy is confirmed by how Lewis (1979) himself applies the similarity con-
straints to a concrete example. As is well known, Lewis (1979) tried to
show that the counterfactual ‘if Nixon had pressed the button there would
have been a nuclear holocaust’ comes out true, given his constraints on
the similarity order and a few auxiliary assumptions about the button and
its connection to nuclear weapons. Lewis’s account of similarity is in part
motivated by the objective to deliver the intuitive result for this counterfac-



CHAPTER 10. BACKWARD CAUSATION 268

tual.l Among the possible worlds in which Nixon does press the button,
there are ones in which a small miracle occurs before Nixon presses the
button and some miracles occur thereafter such that no holocaust occurs.
Why are such possible worlds less similar to the actual world than those
in which no miracle occurs after Nixon pressed the button? To answer this
question, Lewis points out that Nixon’s pressing the button leaves several
traces (Lewis 1979, p.469-71). In other words, Nixon’s pressing the but-
ton is a head event within a fork. To formally capture the causal efficacy
of Nixon’s pressing the button—in a hypothetical scenario where he does
so—it is therefore important that the hypothetical cause is embedded in a
fork. These considerations apply to actual causes analogously.

Let us return to Figure 81, and the causal relation between B and C in the
corresponding causal scenario. We have seen that Lewis’s overall package
of similarity constraints, semantics of counterfactuals and a counterfactual
approach to causation fails to capture this relation as causal since it is not
embedded in any fork. We must wonder whether the problem could be
solved by making the constraints on the similarity order more precise. In
the context of the problem to be solved, we see only two principal options
for this to be done:

(1) Declaring that a possible world with at least one miracle less than
another is always more similar to the actual world than the latter.

(2) Declaring that it is of first importance that the number miracles re-
mains below a certain threshold which is exactly specified.

Let us begin with the first option. If adopted, it could be shown that w;—
the ~B-world with just a miracle shortly before -~B—is more similar to the
actual world than w; in which two miracles occur. However, possible —B-
worlds without any miracles would then count as more similar to the actual
world than w;. In such worlds, not only the future of =B deviates from the
actual world, but also larger parts of the past of =B. (By future of =B we
mean the time point or time period in which event B is absent compared to
the actual world.) As a consequence, option (1) leads to the problem that
backtracking is omnipresent. Many backtracking counterfactuals—in both
the temporal and the causal sense—would come out true on this option.

10Lewis (1979) responds here to a critical note by Fine (1975).
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Notably, Lewis (1979, p. 469) himself considers the option of understanding
similarity in such a manner that miracles are to be avoided at all costs. He
rejects this option because it leads to unlimited backtracking.

If we chose option (2), we would have to declare that a possible world
with more than one miracle is always less similar to the actual world than
a possible world with just one miracle. With this ad-hoc convention, we
could show that w; qualifies as more similar to the actual world than w,.
However, the convention leads to new problems at the level of counterfac-
tuals. Suppose we are in a scenario of forward-directed overdetermination
such that C and A are overdetermining causes of E. Since there is no back-
ward causation in this scenario, we expect that the following counterfactu-
als come out true: “had E not occurred, C would still have occurred’” and
‘had E not occurred, A would still have occurred’. However, it is easy to
show that these counterfactuals come out false on the convention that at
most one miracle is tolerable. Likewise, it can be shown that the following
backtracking counterfactual comes out true on the convention: ‘had E not
occurred, C or A would not have occurred either’. The general problem
is that—in order to block backtracking in a scenario of forward-directed
overdetermination of event E—more than one miracle is needed—in the
possible ~E-worlds considered most similar to the actual world.

Thus we have arrived at the conclusion that every causal relation must be
embedded in a fork on Lewis’s overall account of causation. This, however,
implies that every cause produces several effects, each of which in turn
brings about several further effects, and so on. If this picture were correct,
there would be unlimited exponential growth of events. Figure 82 is an
attempt at a simple graphical explanation of why the number of concurrent
events grows exponentially if every causal relation is embedded in a fork:
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Figure 82: Exponential growth of concurrent events

Now, causation cannot be bound to imply exponential growth of concur-
rent effects. At least if we take our causal judgements concerning well es-
tablished theories in physics seriously, the picture cannot be correct. A
case in point is classical mechanics. Take the Moon orbiting around the
Earth. We take it that gravitational forces between Moon and Earth are
among the causal factors which determine the orbit—unless we follow Rus-
sell (1913) in denying causation to be a legitimate concept of physics. The
problem for Lewis’s account is that there is no growth of events whatsoever
in the idealized model in which Earth and Moon are considered to be point
particles.

Are less idealized systems of the system of Earth and Moon any better off
in the sense that some growth of events becomes recognizable for them?
Such systems consider Moon and Earth as spatially extended objects and
take various kinds of friction into account. For example, they consider that
the momentum of the Moon is slowed down by the tides which are caused
by the Moon. Even for such less idealized systems, exponential growth of
effects is very difficult to recognize. The mere phenomenon of tides does
not involve any growth of events. Considerations of the growth of entropy
may or may not lead us to recognizing some growth of events, but not for
smaller temporal intervals.

More generally, it is worth noting that most, if not all, systems in classical
mechanics do not show any growth of concurrent events. Think of a sys-
tem of billiard balls modelled by classical collision mechanics. There is a
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canonical description of such a system in terms of the momentum and the
position of each ball at a given time point. If we calculate the future de-
velopment of the system using laws of classical collision mechanics, we do
not obtain any growth of concurrent events. The number of events—given
by the canonical description—rather stays constant. Similar considerations
apply to systems of classical mechanics used as foundation in statistical
physics and thermodynamics.

Could Lewis’s account be defended by switching from classical to relativis-
tic mechanics? We were not able to see a loophole opening up by this move,
but have to admit that the concept of concurrent events becomes relativized
then. In any case, if we take our causal judgements seriously—including
our causal judgements for idealized systems in science and everyday life—
a proper theory of causation must not end up with the conclusion that there
is no causation in classical mechanics and many other models of causal pro-
cesses.

Finally, there is a more general, cosmological problem with the conclusion
that there is unlimited exponential growth of concurrent events, which is
entirely independent of our causal judgements. This type of growth is not
sustainable, given there is only a limited number of particles in the uni-
verse. Even under moderate assumptions about the parameters of forks in
our world, the number of concurrent events would exceed the number of
particles in our universe after just a few years of exponential growth. We
have run a little simulation, the result of which was that 100 events produce
2.4 - 101 concurrent events after only seven years of causal efficacy. The
details are not very interesting, and so we leave them out. The interested
reader is encouraged to devise her own simulation.

It is also instructive to take a look at familiar cases of exponential growth
in nature and society. A bacteria culture grows exponentially as long as
enough nutrition is available. The coronavirus spread exponentially for a
certain time in some countries in 2020 and 2021. Some economies showed
exponential growth after World War II. The population of certain countries
with high birth rates and improved medical care has grown exponentially
in the past. However, in all of these cases, exponential growth comes to
an end eventually. The growth rate of a bacteria culture will decline if not
enough nutrition is available anymore. Periods of economic exponential
growth are followed by economic crises. Even if no measures had been
taken against the spread of the coronavirus, the number of new cases of
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COVID-19 would not have grown exponentially forever. At a certain stage,
there are not enough people left to sustain unlimited exponential growth of
new COVID-19 cases. There is no unlimited exponential growth in nature
and society. This type of growth only exists in our theoretical models. It
is therefore, to say the least, extremely implausible to assume unlimited
exponential growth of concurrent events in our physical world.

For the sake of transparency, we should make two assumptions explicit
which have been made in this section. First, most effects have further
effects. Second, forks do not massively overlap in such a manner that a
given event is always the endpoint of several tines coming from different
forks. Figure 83 is an attempt to graphically illustrate this kind of over-
lap. This figure depicts only two forks which overlap symmetrically rather
than a larger number of forks which overlap in arbitrary ways. Our discus-
sion, however, does not lose generality by considering just two interrelated
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Figure 83: Overlap of two conjunctive scenarios

The first assumption is easy to justify. We can almost always think of causal
scenarios in which a given effect has further causal consequences. Think of
a rock which has been moved a few centimetres on the ground. As a con-
sequence of this, certain air molecules collide with the rock which would
not have done so if the rock had stayed at the original place. Certain light
waves get absorbed or reflected by the rock which would have been ab-
sorbed or reflected in a different way by the ground. In the discussion of
the Nixon example, Lewis (1979, 469n) himself assumes that even minor
effects have further causal consequences.

What about the objection that forks may massively overlap so that no ex-
ponential growth follows from the overdetermination thesis? In Figure 83,
the effects result from a conjunction or a disjunction of events. We can rule
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out the disjunctive case since then there would be as much overdetermina-
tion of the future as overdetermination of the past. So, A and C must be
conjunctive factors of both E and F. It must also hold that we can infer A
and C from E and the laws of the causal scenario. Likewise we must be
able to infer A and C from F and the laws. Otherwise there would be no
overdetermination of the past. If E and F were needed to infer A and C,
there would be no such overdetermination.

The problem is that the latter conditions—saying that the conjunctive fac-
tors are inferable from a single effect—are rarely met by conjunctive scenar-
ios in our world. Most of the time, at least some conjunctive factors are not
inferable from the effect since a given effect may be brought about in var-
ious ways. Classical collisions are a striking example. Suppose a collides
with b so that both 2 and b change their momentum because of the collision.
We have at least two conjunctive causal factors: position and momentum
of a, and position and momentum of b at a time prior to the collision. And
we have at least two effects: position and momentum of a, and position
and momentum of b at a time after the collision. Now, there is no way
to infer the two conjunctive factors from a single effect using the laws of
collision mechanics. The fact that a has a certain position and momentum
at a certain time point after the collision may be brought about in lots of
different ways. The actual conjunctive causal factors are just one possibil-
ity which happens to be actual. In order to infer conjunctive causal factors
from effects, we need to know, at least, both effects. Position and momen-
tum of both a and b at a time after the collision are needed to infer position
and momentum for 2 and b at a time prior to the collision. In addition, it
must also be assumed that no collisions with other objects occur. This result
contradicts the overdetermination thesis.

Some readers will have noticed what the more fundamental problem is
which underlies the preceding consideration concerning conjunctive causal
scenarios: classical collision mechanics is time-symmetric. Time symmetry
of a physical theory implies that there is no principal difference between
inferring future states of a system from the present state and the opposite
operation of inferring past states from the present. If there is no overdeter-
mination in one direction, there is no such overdetermination in the other.
If there happens to be overdetermination in one direction, there must be
overdetermination in the other direction as well.

Frisch (2005, Ch.7) and Elga (2001) have pointed out that Lewis’s overde-
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termination thesis is in conflict with the time symmetry of certain micro-
physical theories, specifically the time symmetry of classical mechanics and
the fact that the equations of electrodynamics are time-symmetric. Frisch
(2014, p. 204) concludes that Lewis’s overdetermination thesis is “provably
wrong’. In response to Elga (2001), Loewer (2007) develops an entropy ac-
count of the asymmetry of counterfactuals, which may be extended to an
entropy account of causation. These accounts are not applicable to micro-
physics, at least not directly. Frisch (2014, Ch. 8) described counterexamples
to the entropy account of causation at the level of macrophysics.

Our discussion of Lewis’s fork theory complements critical work on the
overdetermination thesis by Price (1996, Ch.6) and Price (1992). His key
claim is that there are not enough asymmetric forks to ground the asym-
metry of all causal relations. Put differently, there is a reason why Reichen-
bach’s original fork theory is impure in the sense that it does not attempt
to ground all causal relations by embedding the relation in an asymmetric
fork. More specifically, Price argued convincingly that asymmetric forks
disappear at the micro level of physical systems. This criticism parallels the
arguments by Elga (2001) and Frisch (2005, Ch.7) against Lewis’s overde-
termination thesis.

9 The Independence Theory

Hausman’s (1998) independence theory attempts to characterize the direc-
tion of causation without the Humean convention. The core of this theory
is simple: any effect has at least two causes, and these causes are causally
independent in the sense of not having a common cause. We leave out
further details since they are not necessary for our critical note to follow.
Recall that our theory of causation assumes the independence principle for
common cause scenarios, as explained in Section 6 of Chapter 8. But we
do not think this principle could be used to characterize the direction of
causation.

Let us consider a physical system which is described by time-symmetric
laws. For simplicity, let’s look at a system of classical collision mechanics,
and study once more a simple collision. The following figure visualizes the
collision of an object a, which is moving, with an object b, which is at rest:
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Figure 69: Collision between a and b at x>
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Let t; be the time point prior to the collision at which a is at position x}
and b at position x3. t; is the point of the collision, and #3 a time point
after the collision. a is at position 3 and b at position %>’ then. Clearly,
position and momentum of 4, and position and momentum of b at t; are
causes of the collision. Furthermore, the positions and momenta of 2 and b
at t3 are caused by the collision and the positions and momenta prior to the
collision at t1. By the independence principle, all causes of the collision are
independent of one another.

In line with common sense, we take it that causation in classical collision
mechanics is forward-directed in time. The arrows in the figure indicate
the direction of causation. It holds that t; < t, < t3. The simple collision
may be part of a larger physical system with further objects and further
collisions prior to and after that collision. The trajectories and collisions of
the system may be represented by a possible world w. For simplicity, we
consider the trajectories only for a finite period T of time.

Now, let us consider a physical system w’ which is obtained by reversing
the time order. Mathematically, this can be done by defining a new time
function: ' = T — t. If object a is at time £; in world w, it is at this position
at time #| = T — ;. If object a has the momentum j at time ¢4, then it’s mo-
mentum at time #{ = T — t; has the same value but the opposite direction
in space.

By time symmetry of the laws of classical collision mechanics, we know
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that these laws hold in w’. The systems in both w and w’ are deterministic:
given the positions and momenta of the objects at a certain time point t, the
positions and momenta of all objects are determined by the laws for any
other time point.

Note that the possible world @’ is not only a hypothetical consideration.
At least for some physical systems, we can easily set up a system which
has the properties of w'. For example, in w’, object 4 moves from position
X3 to position x. Likewise, object b moves from position %' to position x
so that the two objects collide in w’ as well. They just come from another
direction. Hence, we should say that the collision between a and b in w' is
caused by the positions and momenta of 2 and b at time t; = T — t3.1

By the independence principle, all causes of the collision between a and b in
world w' are independent of one another. Such causes do not have a com-
mon cause. Notice, furthermore, that the causes of the collision between a
and b in w’ are just the effects of the collision between a and b in w—with
the qualification that the momenta of objects in w’ point to the opposite
direction in space. Because of this symmetry, it follows from the indepen-
dence of the causes of the collision between a and b in w’ that the effects
of the collision between a and b in w satisfy the independence principle as
well! By the independence principle, such effects should count as causes
of the collision between a and b in w, even though they are in the future
of that collision. For this conclusion it is important that the independence
principle serves as a sufficient characterization of the direction of causation
in the independence theory.

Hausman has basically three options here. First, point out that the inde-
pendence principle is an important aspect of causation, but insufficient to
account for the asymmetry of causation. Second, conclude that, in physical
systems which are governed by time-symmetric laws, we have backward
causation inasmuch as we have forward causation. This option implies
a gross departure from our causal judgements. Any difference between
causes and effects seems to disappear for time-symmetric systems then.
Third, conclude that we cannot make sense of causation in closed systems
which are governed by time-symmetric laws.

11Things are less straightforward for classical electrodynamics. The equations of elec-
trodynamics are time-symmetric too. But there are actual systems w such that the system
w’'—obtained from w by a reversing the direction of time—is not something we can observe
in nature. See Frisch (2014, Chs.5 and 7) for a detailed discussion.
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Of course, Hausman (1998, Sect.7.4n) is aware of the problem, and has a
response to it. The response is complex, and we should refrain from giving
an oversimplified summary. We understand that Hausman is willing to
accept that there is no causation in closed systems which are governed by
time-symmetric laws. Relatedly, interventions are considered as a means to
recognize an asymmetry between the two worlds w and w’. Interventions
are possible only if the system in question is not closed.

The interventionist response to the problem in question requires a reply
to Reichenbach’s argument that the notion of an intervention already pre-
supposes the Humean convention. We have reviewed and embraced this
argument in the above discussion of Woodward'’s interventionist account.
Hausman is well aware of the argument. The discussion of it remains
inconclusive, and so Hausman seems to acknowledge that Reichenbach’s
point is difficult to refute. More recently, Price (forthcoming) has explored
the connection between an interventionist approach to causation and the
forward-directedness of causation. Unlike Woodward (2003), Price (1992,
1996) has not tried to eliminate the human agent from the interventionist
approach to causation.

To our mind, it remains an important desideratum to make sense of causa-
tion even for closed systems. The reason for this is as follows. In physics
classes and more advanced research in physics, people often study closed
systems using idealizations for simplicity. Otherwise, the mathematical de-
scription is simply not manageable, even with our most advanced compu-
tational devices. The ideal gas model is a case in point. We want to say, for
example, that the pressure of an ideal gas is caused by the collision of the
gas molecules with the walls of the container. Even in theoretical meteo-
rology, people are studying closed systems, while knowing that the atmo-
sphere of the Earth is not closed at all. Our causal judgements in science
encompass causal relations in closed idealized systems, some of which are
governed by time-symmetric laws.

A final note on the refined INUS account by Baumgartner and Falk (2019) is
in order. This account runs into an analogous problem. Clearly, we think
that the positions and momenta of the two objects at ¢; in world w are
causes of their collision. This causal judgement should, in some way or
other, be captured by an INUS-style biconditional. So these positions and
momenta should be conjuncts of a cluster of causal factors in the sense
of the INUS account. The cluster may also contain conjuncts which state
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that no other collisions are happening to the objects between t; and t,. Of
course, t; and t; are mere placeholders for two time points of a collision.
Likewise for the names a and b.

Now, recall that an INUS-style biconditional, basically, needs to satisfy
just two constraints: it needs to be extensionally true and satisfy a certain
condition of non-redundancy. Both the original INUS account by Mackie
(1965) and its refinement by Baumgartner and Falk (2019) attempt to anal-
yse causation without references to temporal relations. Since the collision
between a and b is determined also by the positions and momenta of a2 and
b at time t3—and the absence of other collisions in the time period from ¢,
to t3—these positions and momenta should also be part of some cluster of
causes in the sense of the INUS account. The corresponding cluster is not
redundant. If it was, an analogous problem would arise for the cluster of
the forward-directed causes of the collision between a and b. Hence, we
have not only forward causation, but also backward causation in classical
mechanics.

The proponent of the INUS account has, basically, the same options the pro-
ponent of the independence theory has for a response to this problem. First,
admit that even a refined INUS account does not suffice to characterize the
direction of causation. Second, conclude that there is as much backward
causation as there is forward causation in physical systems which are gov-
erned by time-symmetric laws. Third, conclude that there is no causation
in physical systems which are described by time-symmetric theories. The
latter two options do not seem to be appealing. Going for the third option
would amount to a partial vindication of Russell’s famous (1913) criticism
of the notion of cause.

Finally, Noordhof (2020, Ch. 12) discusses at greater length the problem of
how to account for the direction of causation in systems which are gov-
erned by time-symmetric laws. To address this problem, he takes recourse
to a notion of primitive non-symmetric chance-raising. From our Humean and
post-logical empiricist perspective, such a notion helps very little to resolve
the mystery of causation. We found it very difficult to understand how we
could determine the direction of non-symmetric chance raising other than
by falling back to the Humean convention.
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10 The Disjunctive Fork Theory

Lewis’s theory of causation may be described as a pure fork theory for the
following reason. The direction of all causal relations is thought to be deter-
mined by the structure of forks without consideration of temporal relations.
The theory was aimed to solve two interrelated problems. First, it promised
to be an alternative to the Humean convention which is better motivated
and more objective than this convention. Second, it was intended to help
with an account of backward causation. However, we have seen that the
counterfactual approach to the direction of causation runs into apparently
insurmountable problems. For the time being, this account is not a viable
option. Let us therefore take a look at impure fork theories in the tradition
of Reichenbach (1956).

Dowe (1996) developed an impure fork theory of the direction of causation,
which is based on the following observations and assumptions. We cer-
tainly do have forks which are open to the future. However, some causal
relations may not be a member of an open fork. So let us better not as-
sume that all causal relations are directed through membership in an open
fork. We may or may not have forks which are open to the past. If so, we
should understand the corresponding causal relations as instances of back-
ward causation. In any case, the overwhelming majority of open forks are
open to the future. These ideas are captured by a disjunctive fork theory of
the direction of causation.

Explanation 2. Disjunctive fork theory

Suppose we have a net of events such that edges stand for causal relations.
None of the edges have a direction. Suppose (C, E) is an edge in the net.
Then C is a cause of E iff the edge (C, E) is member of an open fork such
that C forms the head and E the tine, or the directed edge (C, E) is aligned
with the majority of open forks.

Three points are worth noting. First, Dowe adopts Reichenbach’s notion of
causal net whose edges are not directed. Dowe’s explanation of this notion
makes use of temporal relations, without however any presumption about
the direction of physical processes. Temporal relations are needed in order
to determine whether or not a given edge is aligned with the majority of
open forks. Second, an edge (C, E) may be part of two forks such that one
fork is open to the future and the other open to the past. If so, we have to
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conclude that C causes E, and vice versa. Third, the disjunctive approach
to the direction of causation does not depend on the transference theory
of causation, developed in Dowe (2000). Further details are worked out in
Dowe (2000, Ch. 8) and Dowe (1996).

A major objective of Dowe’s impure fork theory is to give empirical con-
tent to the claim that there is backward causation. On this theory, we have
backward causation in our world iff there are conjunctive forks open to the
past. The right-hand side of this biconditional has empirical content, pro-
vided the notion of open conjunctive fork has such content. Dowe (2000,
Ch. 8) works with Reichenbach’s statistical notion of conjunctive fork. He
does not claim that there is backward causation in our world. Whether
there is backward causation rather remains an open question. The disjunc-
tive approach may help answer this question.

Dowe’s impure fork theory is motivated by the entanglement of measure-
ments in quantum mechanics, explained in Section 5. Recall that some
physicists and philosophers of physics have envisioned backward causa-

tion along the lines of the following figure:12

(o) ()
()

Figure 84: Backward causation in a scenario of quantum entanglement

The idea is that the outcome of measurement M causes certain hidden vari-
ables at the source S to assume certain values, which in turn are causal fac-
tors for the outcome of measurement M’. Hence, the correlation between
the results of M and M'. S stands for the source from which the two par-
ticles are emitted. M and M’ stand for the measurement of a quantum-
mechanical property. The phenomenon of quantum correlations has been

12This figure is just a variant of Figure 73. For consistency with our discussion of Re-
ichenbach’s fork theory, we have now adopted Reichenbach’s convention that the direction
of time goes from the bottom to the top of the page.
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experimentally confirmed for the spin of two particles which are emitted
from the same source.

Since, however, presumed causal factors at the source S are not accessible
independently of at least one measurement, the backward interpretation of
entanglement of quantum states remains a mere interpretation so far. At
this point, Dowe’s disjunctive approach to the direction of causation comes
into play. It says that the backward interpretation is justified iff we can find
another event X in the past of measurement M such that XMS forms a fork
open to the past. Such an event must be identified at the type level. That is,
it occurs whenever the measurement M is carried out. But X doesn’t occur
otherwise. The corresponding causal graph is depicted by Figure 85:

Figure 85: Backward causation: the fork XMS is open to the past.

The disjunctive approach remains non-committal as to whether there is
backward causation in our world. It merely specifies empirical condi-
tions under which a backward interpretation of causal processes is justified.
From the perspective of our investigation, it is striking that the disjunctive
approach can be relatively easily built into our reductive theory. For this
to be seen, note that alignment with the majority of open forks is exten-
sionally equivalent to the Humean convention in our world. This criterion
of alignment is even intensionally equivalent to the Humean convention if
we adopt Reichenbach’s definition of what may be called fork time: ‘[I]n a
conjunctive fork ACB which is open to one side, C is earlier than A or B’
(Reichenbach 1956, p. 162). Of course, this definition needs modification if
we want to allow for some forks which are open to the past. The modifica-
tion is straightforward, though.

To make use of the disjunctive approach, it suffices to note that the Humean
convention is extensionally equivalent with the requirement that a causal
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relation be aligned with the majority of open forks. This equivalence holds
at least in our world. With the equivalence in mind, we can generalize our
analysis of causation from the previous chapter to make room for backward
causation.

Definition 32. Cause
Let C and E be events. C causes E—relative to an epistemic state S—iff

(1) C,E € K(S)
(2) C >N E € K(S)

(3) The directed edge (C, E) is aligned with the majority of open forks,
or a member of such a fork with C as head, or C is explanatorily prior
to E.

For the sake of conceptual unification, we may furthermore replace the
Humean convention with the condition of alignment in our reductive anal-
ysis in Chapter 8, which is needed in the definition of explanatory prior-
ity. Finally, we need to generalize the notion of a forward-directed deduc-
tion. The basic idea of the original definition is that no inferential step
goes against the presumed direction of causation. We can retain this idea
as follows. Suppose a literal Lg has been directly inferred from a set P of
premises in this deduction. We say that this inferential step is in line with
the direction of causation iff for all events and absences L¢ asserted in P,
the directed edge (L¢, Lg) is aligned with the majority of open forks or it is
itself a member of an open fork such that L¢ is the head event. With this
requirement we can generalize our notion of a forward-directed deduction
in such a way that temporally backward-directed inferences are admitted.

There remain two problems to be acknowledged before concluding this sec-
tion. First, the undirected edge (S, M) in Figure 85 is a member of two open
forks: one is open to the past and another is open to the future. Taking
the disjunctive approach to the direction of causation seriously, we have
to conclude that the values of hidden variables at S cause the outcome of
measurement M, and vice versa. So we have a situation where C causes E,
while E also causes C. Dowe (2000, p. 205) is prepared to accept this conclu-
sion. This may or may not be a severe problem. Dowe points out that we
find symmetric causal relations in concrete models of backward causation
in physics.
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Second, we must wonder whether the second effect of M—simply called
X—in the scenario of quantum entanglement is epistemically accessible in-
dependently of M and M'. If so, the problem arises that the bilking argu-
ment seems to apply to this effect. There is consensus among Hausman
(1998), Price (1996), and Dowe (1996, 2000) that the values of the hidden
variables at the source are to be epistemically inaccessible—in the absence
of the two measurements M and M'—in order to block the bilking argu-
ment. By analogy, this consideration also applies to the second effect to be
discovered. But if effect X is just as inaccessible as the values of the hidden
variables at the source, then it remains challenging to empirically discover
instances of backward causation. In his review of Dowe (2000), Hausman
(2002) points out this problem.

Now, Dowe (2000, p.207n) is aware of the problem and has a response to
it. He argues that, in order to recognize event X as an effect of the measure-
ment M, we also need to have information about the event of emission at
the source S, including the values of hidden variables. And these values
are not accessible to us prior to the measurements M and M’ and their out-
comes. Hence, bilking is blocked. We are hesitant to follow this response.
Notably, there is an accessible part of the source S of emission. Let us call
Sa the accessible part of S, and S. the complete event, including the values
of hidden variables. Then both XMS, and XMS, form an open conjunc-
tive fork. The correlations between X and measurement M is strict. That
is, whenever X occurs, measurement M is carried out. Hence, on the basis
of observing X and S,—prior to carrying out M—we can infer that X is
caused by the future event M. So, bilking should be possible after all.!?

In this section, we have outlined a generalization of our reductive analysis
which allows for instances of backward causation. The main objective was
to show that there is such a generalization which is in line with at least one
account of backward causation to be found in the literature. We are hesi-
tant to adopt the present generalization of our analysis for three reasons.
First, for the time being, we are lacking empirical evidence for backward
causation. Second, there remains at least one open problem of the disjunc-
tive fork theory. Third, so far, we would have to work with a probabilistic
notion of a conjunctive fork. It remains an open problem to translate this
notion into our inferential framework.

B3Even if the correlation between X and M was not strict, we can make a probabilistic
prediction of M on the basis of X so that bilking seems to be feasible.
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11 Conclusion

In this chapter, we have pursued two interrelated objectives. First, to make
ourselves familiar with selected attempts at an explanation of backward
causation. Second, to review a selection of prominent alternatives to the
Humean convention. At the end of this review, we can conclude that no
such alternative has succeeded yet. The difficulties and problems arising
from alternatives to the Humean convention rather suggest a reconsidera-
tion of it.

To support these conclusions, let us try to give a more systematic account
of the different types of alternatives and modifications of the Humean con-
vention. We suggest the following classification:

(1) Clear-cut alternatives: the Humean convention is abandoned com-
pletely.

(2) Disjunctive approaches: the convention continues to serve as one out
of two means to distinguish between causes and effects.

(3) Refinements and liberalizations: the convention is refined in such a
manner that the resulting analysis solves the problems of simultane-
ous and spurious causation.

Lewis’s (1973b, 1979) counterfactual theory of causation is perhaps the
most prominent clear-cut alternative to the Humean convention. We have
seen that it runs into at least two severe problems. It is, in principle, unable
to account for the direction of causation in physical systems which are gov-
erned by time-symmetric laws. Attempts to improve Lewis’s approach by
reference to the growth of entropy over time may work at the macro level,
but fail to work at the micro level. Moreover, Lewis’s counterfactual theory
implies that there is unlimited exponential growth of concurrent events.
This is highly implausible, and at odds with our observations and accounts
of at least a number of physical systems.

Woodward’s interventionist account of causation makes use of causal
graphs, but avoids references to the Humean convention. We have shown
that the direction of causation remains indeterminate for causal relations
concerning past events on Woodward'’s interventionist account—unless the
Humean convention is adopted. This result is based on Reichenbach (1956).
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Moreover, we have shown that the bilking argument against backward cau-
sation goes through on Woodward’s interventionist account of causation.
This type of causation is not a concern for Woodward (2003), though.

Two more clear-cut alternatives to the Humean convention have been con-
sidered: the independence theory by Hausman (1998) and the refined INUS
account by Baumgartner and Falk (2019). Both are unable to account for
the direction of causation in physical systems which are governed by time-
symmetric laws. Hausman (1998) is well aware of the problem, and is in-
clined to admit that we cannot make sense of causation in closed physical
systems which are governed by time-symmetric laws. We have argued that
this conclusion is not appealing since people in physics and meteorology
often times study such systems. At least sometimes we want to make causal
claims for time-symmetric systems.

Another response to the problem of time-symmetric systems is to accept
that there is as much forward causation as there is backward causation in
such systems. If C is a cause of E, E is a cause of C too. This implies
that there is no difference between causes and effects in time-symmetric
systems. Again, this response is hardly appealing. It would rather support
Russell’s (1913) scepticism about causation.

Let us now move on to the disjunctive approaches. Dowe (2000) draws on
Reichenbach’s original fork theory, and proposes, roughly, the following
account of the direction of causation: C is a cause of E iff the ordered pair
(C,E) is a member of an open fork, or aligned with the majority of open
forks. It is easy to show that the latter criterion is, at least extensionally,
equivalent with the Humean convention. Dowe set forth the disjunctive
approach as an attempt to make sense of backward causation. Without ac-
tually adopting this approach, we have outlined how it could be embedded
into our theory. This way, we could account for the conceptual possibility of
backward causation, while the Humean convention continues to do almost
all of the work when it comes to distinguishing between causes and effects.
However, there remains to meet the challenge of the bilking argument.

Reichenbach’s (1956) original fork theory should not be omitted in this con-
clusion. As the title of his seminal work implies, Reichenbach’s primary
concern is with the direction of time. The direction of causation falls into
place once the direction of time is explained. Reichenbach thinks and ar-
gues that the former direction is strictly aligned with the latter. He basically
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thinks that the Humean convention is part of our concept of causation. As
for the direction of time, his account is disjunctive.

To be precise, Reichenbach proposes at least two accounts of the direction
of time. One is based on the growth of entropy. Another is based on the
notion of an open fork. In essence, event A precedes event B iff the ordered
pair (A, B) is a member of an open fork such that B is the tine event, or
this ordered pair points in the same direction as the other open forks. It is
assumed that all open forks point in the same direction in time. Since the
direction of causation is strictly aligned with the direction of time, Reichen-
bach’s approach to the direction of causation may be said to be disjunctive
in nature too.

Finally, it is striking that Price’s (1996) account of backward causation is
embedded in a disjunctive approach to the direction of causation as well.
The Humean convention remains one of two means to distinguish be-
tween causes and effects. For this to be seen, recall that Menzies and Price
(1993), and Price (1996) set forth an interventionist account of causation.
Such an account rests, in part, on counterfactuals. Menzies and Price are
well aware of this and discuss counterfactuals at greater length. Finally,
recall that Price (1996, Ch. 7) maintains a weakened version of the Humean
convention for the semantics of counterfactuals: when evaluating a coun-
terfactual, we hold the past fixed to the extent it is, in principle, epistemi-
cally accessible to us. Hence, the Humean convention determines the direc-
tion of causation—for a large range of causal relations—as this convention
is built into the semantics of counterfactuals.

A deviation from the Humean convention is only admissible if certain
meta-theoretical principles of theory choice favour an interpretation of cer-
tain correlations in terms of backward causation. In essence, causation is
forward-directed in time unless certain meta-theoretical principles suggest
otherwise. Loosely speaking, Price (1996) retains a light version of the
Humean convention. And he sees a substantial connection between the
convention and human agency (Price forthcoming).

A closer look at the literature on backward causation thus yields a sur-
prising result: prominent, viable accounts of causation which are aimed at
capturing both forward and backward causation retain the Humean con-
vention in one form or other. To be precise, this convention or an equiva-
lent convention remains one of two means to distinguish between causes
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and effects. This result is an important motivation for our reconsideration
of the Humean convention.

Our own theory of causation, which is broadly Humean, makes use of the
convention only in a modified and refined way. For the time being, we
favour the reductive analysis completed in Chapter 9: this analysis solves
the problem of spurious causation, and accounts for simultaneous causal
relations. We have merely outlined how it may be extended to account for
the conceptual possibility of backward causation.



Chapter 11

Conclusion and Synthesis

We set out to analyse causation by way of studying inferential pathways
from causes to effects. Thereby, we aimed to reconstruct how a candidate
cause brought about a given effect. The reconstruction begins with an op-
eration of suspending judgement about the candidate cause and its effect.
A minimum requirement for causation is that—after such a suspension of
judgement—the effect can be inferred from the candidate cause together
with the laws of the respective background theory.

We have expressed the minimum requirement for causation by an
epochetic conditional C > E. This conditional has the intuitive meaning
that C is a reason for E, given C and E are believed. For C to be a genuine
cause of E, the proposition that E occurs must be a reason for the occur-
rence of E. The next step is to impose further constraints on the inferential
relations between C and E so as to characterize genuine causal relations.

We have developed two analyses of causation in terms of inferential path-
ways. Each analysis is centred on two inferential constraints. We will
now review very briefly the two analyses, and then show how they can be
merged into a coherent and comprehensive theory of causation. Finally, we
conclude with an outlook at how our epistemic analysis may be extended
to an account of causation in the objects.

288
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1 Causes in Causal Models

The first condition of the causal model analysis requires that each infer-
ential step to a literal, made by a structural equation, must depend on the
assumption of the candidate cause. We express this condition by the notion
of an active path.

Definition. Active Path

Let (M, V) be a causal model, which is uninformative on the literals C and
E. There is an active path leading from C to E in (M, V) iff E can be inferred
from (M, V)[V][C] such that any inferential step to a literal—by a structural
equation—depends on C.

In less formal terms, existence of an active path means that each inferential
step to a literal may be interpreted as a section in a causal process which
was started by the candidate cause.

The second condition for genuine causation concerns the notion of de-
viancy. It has two parts. First, genuine causes are at least weakly deviant.
Second, if there are events or absences in the context of the candidate cause
which are not deviant, then we must not suspend judgement on them when
looking for an agnostic model with an active path. We judge causal rela-
tions against a background of weakly normal events and absences if there
are any in the context of the candidate cause. Our final definition of an
epochetic conditional >> goes as follows:

Definition. (M,V,N) |= C > E
Let (M, V,N) be an extended causal model. C > E iff there are V' C V
and M’ C M such that

(1) (M', V') is uninformative on C and E.
(2) There is an active path from C to E in (M/, V') [V'].
(3) All the structural equations of C’s descendants are in M'.

(4) Cisweakly deviant and any literal C’ € V \ V/ which is not a descen-
dant of C in M/, and different from C, is deviant.

The notions of deviancy and weak deviancy are explained in terms of in-
ferences from a set N of norms and default laws.
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The justification for condition (3) is twofold. First, when suspending judge-
ment on the candidate cause and its effect, all inferential relations between
the two are to be preserved. This is why we must not suspend judgement
on structural equations of the descendants of the candidate cause. Second,
sometimes causes of a common effect are entangled by a causal connection
which goes through an ancestor of the candidate cause. Then it may be nec-
essary to disentangle these causes in order to reconstruct a certain causal
pathway. Condition (3) permits us to suspend judgement on causal rela-
tions among the non-descendants of the candidate cause, and to thereby
disentangle the causes of a common effect.

In sum, there are two conditions for actual causation. First, cause and ef-
fect occur. Second, the effect is inferable from the candidate cause—after
an operation of suspending judgement on both—along an inferential path-
way such that each inferred literal depends on the candidate cause, where
that cause and its context satisfy a condition of deviancy. By the second
condition we aim to capture a notion of factual dependence of the effect
on its cause. The two conditions can now be stated by the template of our
epochetic approach to causation in causal models.

Definition. Cause
Let (M, V, N) be an extended causal model such that V = M. C is a cause
of E relative to (M, V, N) iff

(C1) (M,V) =CAE,and

(C2) (M,V,N) =C>E.

Note that C and E are literals, which may well stand for absences.

We have shown that our causal model analysis delivers the intuitive ver-
dicts for virtually all causal scenarios which have received some attention
in the literature. We are not aware of another analysis of actual causa-
tion which is equally comprehensive. Specifically, we have shown that
our analysis is more comprehensive than the most advanced counterfac-
tual accounts in Andreas and Giinther (2025a). The latter fail to agree with
at least some of our causal judgements in scenarios which are captured by
our analysis.
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2 The Reductive Analysis

The reductive analysis poses a greater challenge since we cannot rely on
structural equations anymore. Not surprisingly, this analysis is more in-
volved than the causal model analysis. But the core of the reductive analy-
sis has remained relatively simple and, we think, intuitively accessible. Let
us begin with the constraints on the inferential pathways from the candi-
date cause to the effect—after an operation of suspending judgement on
both. Only two constraints are needed.

First, each inferential step to a literal must satisfy a weak formulation of the
Humean convention: it must not be backward-directed in time. To be more
precise, the inferred literal must not stand for an event or absence which
precedes an event or absence asserted by a premise of the inferential step
in question. Second, each law used on the inferential path—from the can-
didate cause to its effect—must be non-redundant. We explain the latter
constraint on the basis of a minimalist and syntactic notion of law, with-
out taking any distinction between proper laws of nature and accidental
generalizations for granted.

Our notion of non-redundant law is inspired by the best system account,
but goes beyond extant formulations of this account. We distinguish be-
tween two types of redundancy. Deductive redundancy of a law A in a set
I' means that it can be inferred from I' \ {A} by classical, deductive reason-
ing. Analogously, a law A is said to be abductively redundant in a set I iff
A can be inferred from I' \ {A} by abductive reasoning. To properly explain
the latter notion, we have introduced an inference system of abductive rea-
soning, which is free of causal notions. Both types of redundancy need to
be considered in order to properly discriminate between genuine and spu-
rious causal relations. We have spelled out a criterion of non-redundancy
which merges the two types into a unified notion. The resulting analysis
has been shown to successfully discriminate between spurious and genuine
causes for a wide range of causal scenarios.

Finally, the pair of cause and effect must satisfy a liberalized variant of the
Humean convention: the cause precedes its effect or they are simultaneous,
while the cause is explanatorily prior to the effect. Explanatory priority is
in turn explained in terms of Humean causal relations: C is explanatorily
prior to E iff we have a causal Humean explanation of C which is indepen-
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dent of E, but not vice versa. This way, we can account for simultaneous
causation on the basis of Humean causal relations.

As for backward causation, we have merely outlined how our analysis may
be extended to capture it. The proposal is basically an adoption of Dowe’s
(1996) disjunctive approach to the direction of causation. Notably, one of
the two disjuncts—by means of which we can distinguish between causes
and effects—is equivalent to the Humean convention, at least extension-
ally. Since, however, there remain some open problems surrounding the
very notion of backward causation, we are hesitant to further extend our
analysis by an account of this type of causation.

In sum, a genuine cause must satisfy three conditions on the reductive anal-
ysis. First, trivially, cause and effect occur. Second, the effect can be inferred
from the cause such that each inferential step to a literal satisfies two con-
straints: it is not backward-directed in time and does not use a redundant
law as premise. Third, the cause precedes the effect or is explanatorily prior
to the latter. In more formal terms:

Definition. Cause
Let C and E be events. C causes E—relative to an epistemic state S—iff

(1) C,E € K(S)
2) C>»Nv E € K(S)

(3) C precedes or is explanatorily prior to E.

For simplicity, we do not repeat the detailed explanations and definitions
of redundancy and non-redundancy here. Note that C and E are liter-
als, which may well stand for absences. Recall that the subscript of the
epochetic conditional >ry stands for the two constraints just explained:
the inferences to literals must be forward-directed in time, and all laws are
to be non-redundant.

3 Synthesis

It’s time to merge the causal model and the reductive analysis into a coher-
ent and comprehensive account of causation. Note that these two analyses
have different virtues. They do not apply equally well to all kinds of causal
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scenarios. The causal model analysis is aimed at capturing as many scenar-
ios of actual causation as possible. We have shown that it succeeds in this
endeavour in Part I. But the causal model analysis is not reductive since we
lack a reductive explanation of structural equations. So far, such equations
represent elementary causal dependences among events and absences.

The reductive analysis, by contrast, fails to recognize certain subtle rela-
tions of actual causation. For example, scenarios for which deviancy and
normality matter are obviously not captured. Also, the reductive analysis
does not seem to be able to discriminate between genuine and preempted
causes. It may or may not be possible to extend the reductive analysis by
the requirement that there is an active path from the candidate cause to the
effect. The price for such an extension would be additional complexity.

Causal relations in science, however, are better captured by the reductive
analysis. The reason for this is that the background theory of the causal
scenario in question is not constrained by the logical form of determinis-
tic causal models. At least in principle, the reductive analysis applies to
scenarios which are described by highly complex mathematical theories.
Obviously, a distinctive virtue of the reductive analysis is that it is reduc-
tive.

Let us now merge the reductive analysis with the causal model analysis.
The simple idea is to use the reductive analysis as foundation of causal
models. Suppose (M, V) is a deterministic causal model about a causal
scenario. Further, suppose S is an epistemic state which contains beliefs
about the same scenario. The epistemic state has the format assumed for
the reductive analysis: it is a ranked belief base, no sentence has occur-
rences of modal or causal notions, etc. Finally, we assume that all literals
of the language of M have translations to literals in the language of the
epistemic state S.

With this in mind, we define that a causal model (M, V) is verified by an
epistemic state S iff, roughly, all elementary causal relations on the causal
model analysis come out as genuine causal relations on the reductive anal-
ysis, and vice versa. This relation holds for all edges of the causal model
and all complete valuations which are consistent with M. In more formal
terms:

Definition 33. Verification of a causal model
Let (M, V) be a causal model and S an epistemic state, as just described.
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Let L% be the translation of the literal L, from the language of M into the
language of S. Further let V* be the set of literals in the language of S
obtained by the translations of the set V' of literals into the language of M.
The epistemic state S verifies the causal model (M, V) iff two conditions
are satisfied:

(1) for each literal Ly, if (M, V) = Ly, then L%, € K(S).

(2) For all complete valuations U which are consistent with M and all
edges from A to B in the causal graph of M, the following bicondi-
tional holds: L4 is a cause of Lg—relative to (M, U)—on the causal
model analysis without deviancy iff L’ is a cause of Lz—relative to
U(S x A U*)—on the reductive analysis.

The first condition says that all literals which are true on the causal model
(M, V) are beliefs of the epistemic state S. The second condition applies
to all edges of the causal graph of M. Suppose L4 and Lp are true on the
causal model (M, V), while there is an edge from the variable A to B. Then
the second condition says that whenever L4 is a cause of Lg on the causal
model analysis without deviancy, L is also a cause of L} on the reductive
analysis, and vice versa. This relation must not only hold for the actual
valuation V, but for all complete valuations U which are consistent with
M. If L 4 is in fact a cause of Lg on a valuation U, we call this causal relation
elementary since it goes along a single edge in the causal graph of M.

The operation S * A U* stands for the revision of the epistemic state S by
some conjunction of the set U* of literals. | J(S * A\ U*) gives us the union of
the ranks which make up the ranked belief base S * A U*. This operation re-
moves the priorities between laws and beliefs about facts so that we obtain
what is called a flat belief base, that is, a belief base without ranks. Removing
these ranks is necessary since otherwise we cannot properly capture causal
scenarios of entanglement. The reductive analysis is written for a ranked
belief base rather than one without ranks in order to simplify its applica-
tion. But the ranks are not essential. This may be verified using the more
detailed account of belief revision in Appendix B.

Since the reductive analysis does not consider deviancy and normality
of an event, we have defined the relation of verification using the causal
model analysis without deviancy from Chapter 2. This is not a severe re-
striction for the following reason. Once a causal model (M, V) has been
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verified by an epistemic state, we can extend this model by a set N of norms
and default laws. Below we will state our final, reductive analysis, which
exploits the verification of causal models by an epistemic state.

Take the famous rock-throwing example about Suzy and Billy for illustra-
tion. A simple epistemic state S which verifies this model would be one
which basically has material implications instead of the structural equa-
tions of the causal model. Also, information about the temporal relations
among the events need to be added so that the elementary causal claims
of the causal model can be verified. However, the epistemic state which is
to verify the causal model may also be more complex and contain further
information. For example, we may have precise information about the ve-
locity of Suzy’s rock, the material of the bottle, the spatial relations among
the children and the bottle, and so on.

The relation of verification between an epistemic state and a causal model
is understood in analogy to the model-theoretic relation of verification. Re-
call that, in model-theoretic semantics, we say that a certain interpretation,
or structure, of a formal language verifies a set I' of sentences iff all mem-
bers of I are true on this interpretation. Notably, one and the same set of
sentences may be verified by a variety of different interpretations. One and
the same set of sentences has different structures which verify it. Likewise,
a causal model may be verified by a variety of different epistemic states.

Notice, furthermore, that a given epistemic state does not determine a
causal model uniquely. Take again the famous rock-throwing scenario. A
maximally simple causal model of this scenario contains just the following
structural equation: the bottle shatters = Suzy throws a rock or Billy does.
The valuation V is such that both Suzy and Billy throw a rock, and the
bottle shatters. This causal model is verified by an epistemic state which
contains all the information given by the informal story of the scenario.
Once judgement has been suspended on the candidate cause and its effect,
there is an inferential path from Suzy’s throw of a rock to the shattering of
the bottle such that the inferences to literals are not backward-directed in
time. Also, all laws of such a path are non-redundant relative to the laws
of the epistemic state. Likewise for Billy’s throw. The latter inferential path
is more complex since it involves reasoning by cases, but it satisfies all the
constraints of the reductive analysis. The details may be verified by the
interested reader.
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Now, the epistemic state of the informal story does not only verify the maxi-
mally simple causal model, but also the standard model of late preemption.
We have explained the latter model in Section 6 of Chapter 3. The stan-
dard model considers—unlike the maximally simple model—intermediate
events between Suzy’s and Billy’s throw of a rock, and the shattering of the
bottle. For example, the epistemic state of the informal story verifies the
causal statement that Billy’s throw of a rock is a cause of Billy’s rock hitting
the bottle on the valuation V which says that Billy throws a rock, while
Suzy does not. The verification is straightforward.

Let us also briefly exemplify the distinction between elementary and non-
elementary causal relations. Suppose, once more, Billy throws a rock, while
Suzy does not. Then there is a relation of actual causation between Billy’s
throw and Billy’s rock hitting the bottle. The causal relation is elementary—
on the standard late preemption model—since it goes along a single edge
in the causal graph of this model. By contrast, the causal relation between
Billy’s throw and the shattering of the bottle is not elementary on the stan-
dard model since there is no direct connection between the variables of the
causal relata.

In sum, the relation of verification between causal models and epistemic
states is many-to-many. One and the same causal model may be verified
by different epistemic states. Reversely, one and the same epistemic state
may verify different causal models.

4 The Final Analysis

We have just observed that a given epistemic state does not determine a
unique causal model by the relation of verification. We must therefore won-
der which causal models—of all the models which are verified by a given
epistemic state—we should use as standard for the determination of causal
relations. Is it enough to consider just one causal model—which is verified
by the respective epistemic state—to test for relations of actual causation in
a given scenario?

The answer to this question is in the negative. The problem with this strat-
egy is that very simple causal models of scenarios of preemption are in-
distinguishable from causal models of disjunctive scenarios. We have just
discussed such a model, which is based on a single structural equation: the



CHAPTER 11. CONCLUSION AND SYNTHESIS 297

bottle shatters = Suzy throws a rock or Billy does. On this model, Billy’s
throw is not preempted. The standard approach to this problem is to con-
sider more fine-grained models which take intermediate variables into ac-
count.

In line with the standard approach, our analysis in Part I works well for
causal models of preemption with intermediate variables. But our anal-
ysis goes beyond the standard approach in that it provides a solution to
the preemption problem without intermediate variables. Take the causal
model which is only slightly more complex, and contains the following
structural equation: the bottle shatters = Suzy throws a rock, or Suzy does
not throw a rock while Billy does. Given that both kids throw a rock, there
is no active path from Billy’s throw to the shattering of the bottle. Hence,
our causal model analysis successfully discriminates between genuine and
preempted causes using only a slight refinement of the structural equation
from the maximally simple causal model.

In other words, our causal model analysis fails to discriminate between pre-
empted and genuine causes only for the maximally simple causal model.
Trivially, any refinement of this model—by considering intermediate vari-
ables or just a slight refinement of the structural equation—gives us more
information about the causal scenario in question.

Notice, finally, that we can observe the following property of monotonic-
ity for our analysis of actual causation in Part I. Whenever C is con-
sidered a genuine cause of E—according to our commonsensical causal
judgements—our causal model analysis says so on simple and more com-
plex causal models. The genuine cause in a preemption scenario is a case
in point. Some non-causes, by contrast, cannot be recognized as such on
certain simple causal models. They come out as non-causes only on more
complex causal models. The preempted cause in a scenario of preemption
is a case in point, as just explained. With these considerations in mind, we
state our final analysis of causation in terms of non-causal and non-modal
concepts:

Definition 34. Cause

Let S be an epistemic state, as just described. Let N be a set of norms and
defaults. Suppose, finally, that C and E are literals. C is a cause of E iff, for
all causal models (M, V) which are verified by S, it holds that

(1) (M,V) =CAE,and
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2) (M,V,N) =C>E.

At least from a logical point of view, this analysis is fully reductive. The
basis of reduction contains no causal or modal concepts.

The final analysis demands to consider all causal models (M, V) which are
verified by a given epistemic state in order to show that a candidate cause
is genuine. In practice, this is neither feasible nor sensible. It rather suffices
to go beyond the maximally simple causal models of a given scenario. This
heuristic guideline, however, is difficult to be made more precise. Hence,
our final analysis demands consideration of all causal models which are
verified by a given epistemic state. While this is a strong idealization with
regard to our commonsensical causal judgements, it is in line with our over-
all methodology which admits of idealizations at the theoretical and logical
level.

Admittedly, our extended causal model analysis failed to deliver the intu-
itive verdicts for some scenarios of overdetermination if the causal model
omits certain facts from the informal story of the respective scenario. This
problem, however, only arises when at least one of the candidate causes
accords with a norm or is present by default. For now, it’s an open problem
for the above idea that a genuine cause may be recognized for all causal
models which are verified by a given epistemic state. More work needs to
be done on the notions of deviancy and normality to solve this problem.

Consideration of a range of causal models could be avoided in the final
analysis by merging the inferential constraints of the causal model analysis
more directly with those of the reductive analysis. For example, it may be
possible to define the notion of active path for deductions in propositional
and first-order logic.

We decided to not merge the two analyses in a more direct manner so as to
separate problems of actual causation from specific problems of a reductive
analysis. The benefit of this strategy is a modular architecture of our theory
of causation. Different types of problems are addressed by different analy-
ses. Then, at the final stage, the two analyses are merged. But the reductive
analysis is not built on top of the non-reductive one.

Let us now resume our discussion of preemption scenarios and spell out
how the final analysis applies to such scenarios. A maximally simple model
of preemption contains just a single structural equation of the following
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type: the effect occurs = the preempted cause occurs or the genuine cause
does. For the rock-throwing scenario, we have: the bottle shatters = Suzy
throws a rock or Billy does. Such a model is not false, but omits important
information. Most notably, there is no asymmetry between the genuine
and the preempted cause anymore. Hence, we cannot tell which of the
candidate causes is genuine and which is preempted.

Now, there are at least two ways to refine the maximally simple model.
First, we consider intermediate events. This way, we obtain the standard
models for early and late preemption, discussed in Chapter 2. Second, we
modify the structural equation of the maximally simple model as follows:
the effect occurs = the genuine cause occurs, or the preempted cause occurs
while the genuine one does not. We have shown that our causal model
analysis properly discriminates between genuine and preempted causes on
both refinements of the maximally simple causal model.

With these observations, the application of the final analysis to scenarios of
preemption almost falls into place. Suppose the epistemic state contains all
the information of the informal story concerning a scenario of preemption.
Then both the maximally simple and refined causal models with interme-
diate variables are verified by the epistemic state. The causal model with
the modified structural equation is not, at least not for scenarios of early
and late preemption. The problem is that the reductive analysis does not
solve problems of early and late preemption. Hence, there is an elementary
causal statement—saying that the preempted cause is an actual cause of the
effect—which comes out true on the reductive analysis, but not so on the
causal model analysis.

Our final analysis is nonetheless able to discriminate between preempted
and genuine causes. This is so for the following reason. In order to show
that the preempted cause does not qualify as genuine on the final analy-
sis, it suffices to have one causal model such that the model is verified by
the epistemic state and the preempted cause does not come out as genuine.
Causal models of preemption with intermediate variables satisfy these two
conditions. Hence, the preempted cause is not genuine on the final analy-
sis, as it should be. Recall that the final analysis demands that a genuine
cause qualifies as such on all causal models which are verified by the re-
spective epistemic state.

The genuine cause, by contrast, comes out as such on both the maximally
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simple and the more refined causal models of the preemption scenario.
Hence, the genuine cause qualifies as such on all causal models which are
verified by the epistemic state. This implies that it comes out as genuine on
the final analysis, as it should be. Note that the causal verdict concerning
the genuine cause tacitly assumes the above principle of monotonicity: if a
candidate cause qualifies as genuine on a simple causal model, then it does
so on all refinements of that model. For simple scenarios, it may be possible
to consider all causal models which are verified by a given epistemic state.
For more complex ones, it is not. There remains the challenge of finding a
proof or counterexample to the monotonicity principle.

The treatment of scenarios of simultaneous preemption—also referred to
as trumping—is slightly different. In the standard scenario of trumping,
we have information that orders from the major trump orders from the
sergeant. We may express this information in our epistemic state S by a
sentence along the following lines: the soldier follows the command of the
sergeant in the absence of a command by the major. Furthermore, we know
that both the major and the sergeant give the command ‘Advance!” We also
know that the major and the sergeant give a command.

Now, when we test for causation between the sergeant’s command and
the soldier’s advancing on the reductive analysis, the result is in the neg-
ative. This is so because, after suspension of judgement on the candidate
cause and the effect, we do not know which order was given by major. For
this reason, we cannot determine if the soldier will follow the order of the
sergeant once we suspended judgement on the soldier’s advancing. Hence,
our epochetic test fails to verify that the sergeant’s command is a cause of
the soldier’s advancing, as it should be.

This result, in turn, implies that the epistemic state S does not verify a
maximally simple causal model of the trumping scenario. Such a model
just contains the following structural equation: the soldier advances = the
major or the sergeant gives this order. By contrast, the epistemic state S
does verify more refined causal models, such as the one with the following
equation: the soldier advances = the major gives the order to advance, or
else the major does not give an order while the sergeant orders the soldier
to advance. We have shown in Chapter 2 that our analysis successfully
discriminates between the genuine and the preempted cause on the latter
causal model. Hence, our final analysis, stated in this section, is able to
make this discrimination as well.
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It remains to note that intermediate variables could also be used to solve the
standard scenario of trumping. For example, we could introduce a variable
for the event that the soldier accepts the commend from the major. Like-
wise for the sergeant’s command. These two events are interrelated in the
same way Suzy’s rock hitting the bottle and Billy’s rock hitting the bottle
are. The benefit of using intermediate variables is a more uniform treat-
ment of early, late, and simultaneous preemption on the final analysis.

In sum, our final analysis addresses the problem of model relativity by con-
sidering a range of causal models. As is well known, a causal model analy-
sis is always relative to a causal model. The causal verdicts may vary with
the causal model considered, as just explained. The question thus arises
which causal models should be used to determine causal relations. Our an-
swer to this question is that all causal models should be considered which
are verified by the respective epistemic state. Only when considerations of
normality and deviancy come into play, relativity to a causal model seems
hard to eliminate.

Of course, the final analysis remains relative to an epistemic state. This
relativity, however, is less severe for two reasons. First, we have further
expressive resources when modelling a scenario in terms of classical logic.
Second, given the informal story of a causal scenario, it is easy to judge
whether an epistemic state gives us a comprehensive account of the story.
It is obvious, for example, that maximally simple accounts of a scenario of
preemption leave out some information concerning the candidate causes.
So, we should use epistemic states—as standard of verification for causal
models—which are comprehensive with regard to the causal scenario in
question. We are happy to admit that some model relativity and vagueness
remain. These may be eliminated in ways outlined in the next section.

Finally, we should not omit one qualification concerning the claim of re-
duction in this conclusion. In Section 7 of Chapter 7, we have looked at the
conceptual order of judgements about temporal relations in fundamental
physics. Some of these judgements are based on causal hypotheses rather
than the other way around. The latter hypotheses, however, are inferred
from causal judgements for which the standard conceptual order of the
Humean convention continues to hold: they are based on temporal rela-
tions which are, at least apparently, accessible independently of any causal
judgements. The details are complex, and so we have not attempted to
make this qualification part of our explicit analysis. After all, the final anal-
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ysis has the logical form of an explicit definition such that all concepts of
the definiens are free of causal and modal notions.

5 Causation in the Objects

We set out to resolve the mystery of causation by way of an analysis of
the inferential relations between causal and non-causal statements. Our
analysis, however, does not go all the way down to the level of objects,
independently of our concepts and beliefs. It’s time to outline very briefly
how the analysis could be connected to the objects of the real world. Two
different approaches may be pursued.

First, we take recourse to the hypothetical assumption of an omniscient
epistemic state. Arguably, the epistemic state of an omniscient being gives
us access to the world of objects, if only hypothetically. Applied to such
a state, our epistemic analysis becomes connected with the objects of the
real world. It could then be read as a theory of causation in the objects, if
only indirectly. We understand that few readers will be impressed by this
manoeuvre. The hypothetical assumption of an omniscient being seems to
add even more mystery to causation rather than resolving any mysterious
aspect of it.

Reference to an omniscient epistemic state could be defended, though, by
Putnam’s work on metaphysical realism, contrary to his own intentions.
Putnam (1980, 1981), famously, argued that standard realist semantics is
just as mysterious as the assumption of an omniscient being. The for-
mer tacitly assumes the viewpoint of the latter. The notion of realist se-
mantics is in turn explained by the realist principle that truth is entirely
non-epistemic. Truth is one thing, our theories and beliefs are another.
There is a clear-cut division between mind and world. Of course, Putnam’s
arguments have remained controversial, and there is no consensus as to
whether they succeed. We leave it to the reader whether she considers ref-
erence to an omniscient being a viable option.

Second, the connection to the world of objects could be made through
some substantial epistemological theory. We may impose the following
constraint on the epistemic state S which is used as foundation of a causal
model via of our reductive analysis: the agent of the epistemic state does
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not only believe the propositions of all sentences ¢ € K(S), but has ac-
tual knowledge of these propositions. Then the notion of knowledge is
explained by whatever epistemological theory the reader prefers. On this
strategy, we take it for granted that knowledge implies truth so that the
epistemic state is connected to the objects of the real world. Different ac-
counts of knowledge may be plugged into our epistemic theory of causa-
tion in this way.

One challenge arising on the second strategy is that the preferred epistemo-
logical theory should not use any causal notions as primitives. Otherwise,
the resulting account of causation may be charged with remaining mys-
terious concerning the causal connections between rational belief and the
world. A famous instance of this problem is Kant’s Critique of Pure Reason
(1781/1998). At the beginning of the Critique, Kant uses causal notions to
explain how things in themselves are related to an epistemic subject. Then
we are told that causation is a category which should only be applied to
intuitions and perceptions, but not beyond. If applied to things in them-
selves, we run into various paradoxes and contradictions. Hence, by his
own standards, Kant should not have used causal notions to explain the
relation between things in themselves and epistemic subjects. Hume saw
an analogous problem arising for his own approach to causation:

The only conclusion we can draw from the existence of one
thing to that of another, is by means of the relation of cause and
effect, which shews, that there is a connexion betwixt them, and
that the existence of one is dependent on that of the other. The
idea of this relation is deriv’d from past experience, by which
we find, that two beings are constantly conjoin’d together, and
are always present at once to the mind. But as no beings are
ever present to the mind but perceptions; it follows that we may
observe a conjunction or a relation of cause and effect between
different perceptions, but can never observe it between percep-
tions and objects. "Tis impossible, therefore, that from the exis-
tence or any of the qualities of the former, we can ever form any
conclusion concerning the existence of the latter, or ever satisfy
our reason in this particular. (Hume 1739/2001, Book I, Part 4,
Sect.2,§47)

Both Kant’s and Hume’s system invite scepticism concerning knowledge
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of external objects. Some readers of Kant responded to this challenge by
questioning the dictum of a strict separation between mind and world.
Epistemic elements are not only needed to analyse our concept of causa-
tion, but also our concept of truth. Putnam’s (1992) vision of realism with a
human face is an attempt in this direction.

A great deal of mystery remains to be explored. In this book, we have
merely tried to resolve some of the mystery surrounding our concept of
causation building on a basis of non-causal and non-modal concepts. The
final analysis has the logical form of an explicit definition such that all con-
cepts of the definiens are free of causal and modal notions. This is our
reductive theory of causation.
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Appendix A

The Logic of Causal Models

We have defined the notion of cause in terms of inferential pathways from
causes to their effects. This approach has been pursued for both the causal
model and the reductive analysis. For the causal model analysis, infer-
ential pathways are understood in a system of deductive reasoning with
structural equations. We have outlined such a system in Chapter 2. In
essence, reasoning with structural equations has been defined on the basis
of classical propositional logic with the following qualifications.

There are two elimination rules for the equality symbol =, which are anal-
ogous to Modus Ponens in classical logic. But there is no introduction rule
for this symbol. We have two distinct sets of premises: a set M of structural
equations and a set V of literals. To exclude causally backward-directed
inferences, we have to intervene on the set M of structural equations with
the set V of valuations and the candidate cause C. Otherwise, the inference
rules of classical logic for negation, conjunction, and disjunction remain in
place.

In this appendix, we show that our system of deductive reasoning with
structural equations is in fact sound and complete with respect to the se-
mantics of causal models outlined in Chapter 2. We show this result for
sets I' of arbitrary Boolean propositional formulas. This is a generalization
of sets V of literals, which served as premises in Part I. Finally, we show
how our propositional causal models may be extended to causal models
with non-binary variables.

306
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1 Motivation

From a logical point of view, it is striking that deterministic causal models
are introduced very much like a formal logical system. But there are some
noteworthy differences. While the semantics of interventionist conditionals
uses model-theoretic concepts, we do not have a model-theoretic semantics
for inferences in a causal model. Nor do we have a system of natural deduc-
tion that allows us to capture such inferences. Halpern (2000) and Briggs
(2012) devised axiomatizations of interventionist conditionals using causal
models. These axiomatizations, however, do not give us a logic of causal
reasoning for drawing inferences from a set of structural equations. They
define a logic of conditionals, but not a logic of causal reasoning with struc-
tural equations as premises.! The notion of a structural equation itself has a
syntactic flavour, but its explicit definition in Halpern (2000), and Halpern
and Pearl (2005) is a semantic one.

Let us begin with reviewing some basic observations on structural equa-
tions from Chapter 2. Suppose A = ¢ is a structural equation. If ¢ is given
or inferred from other premises, we can infer A from it. This inference has
a causal meaning: potential causes of an event are on the right-hand side
of a structural equation, while effects are on the left-hand side. The no-
tion of a structural equation stands for a nonsymmetric determination of a
variable by the values of certain other variables. And this nonsymmetry is
supposed to mirror the nonsymmetry of causal relations. If C is a cause of
E, then we cannot infer from this that E is also a cause of C. This contrasts
with the symmetry of the biconditional <+ and the identity predicate = in
classical logic. In the absence of causal cycles, a structural equation always
represents an asymmetric determination.

In light of a structural equation being nonsymmetric, we can distinguish
between two types of inferences with structural equations. First, inferences
from causes to effects, and second, inferences from effects to causes. The
latter type of inference is commonly called abductive. Our logic of causal
reasoning is forward-directed in the sense that it is only about inferences from
causes to effects.

The logic centres on a syntactic notion of a structural equation. We consider

For an investigation of the relation between conditionals based on causal models and
conditionals based on possible worlds, see Halpern (2013) and Huber (2013).
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the equality symbol of such an equation a distinct logical symbol, and in-
troduce natural deduction rules for it. These rules are supplemented by a
model-theoretic semantics. We introduce the notion of a causal model as a
set of structural equations, and describe the interpretation of such a model.
The present logic of causal reasoning thus allows us to explain the notions
of a structural equation and a causal model in a standard logical format.

One word on the arity of variables in a causal model is in order. We begin
with propositional causal models, which are restricted to binary variables.
This restriction will be lifted in Section 6 using concepts from many-sorted
tirst-order logic.

2 Propositional Causal Models

Let us first develop an account of causal models which will serve as founda-
tion for the present logic of causal reasoning. In spirit, we very much follow
Halpern (2000), and Halpern and Pearl (2005). The main difference to these
accounts is that we define the notion of a structural equation in a syntactic
manner. Two further differences are noteworthy. First, our formalism does
not require any distinction between exogenous and endogenous variables.
Second, interventions are defined for arbitrary Boolean formulas, not only
for conjunctions of atomic formulas.?

Causal models represent law-like relations between events. Some events
occur and so are actual, other events do not occur and so are non-actual.
Any event occurs or does not. We represent events by propositional vari-
ables. The truth value of a propositional variable denotes whether or not
the corresponding event occurs. A being true means that the correspond-
ing event occurs, while A being false means that the event in question does
not occur.

Let P be a set of propositional variables such that every member of P repre-
sents a distinct event. Lp is a propositional language whose logical symbols
are the Boolean connectives. It is defined recursively in the standard way:
(i) Any A € Pisa formula. (i) If ¢ is a formula, then so is —¢. (iii) If ¢ and
y are formulas, then so are ¢ V ¢ and ¢ A . (iv) Nothing else is a formula.

The latter generalization has already been realized in Briggs (2012). We agree with
Briggs (2012) on the general strategy for defining such interventions and corresponding
conditionals.
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We explain the notion of a structural equation in a syntactic fashion. Let A
be a propositional variable of Lp. Let ¢ be a propositional formula of Lp
which has no occurrences of the variable A and which is neither a contra-
diction nor a logical truth. Then

A=¢

is a structural equation based on Lp. Nothing else is a structural equation.
The intended meaning of such an equation is that the truth value of ¢ de-
termines that of A. This determination has a causal meaning;: it goes from
causes to an effect. We shall come to see at a later stage how this direct-
edness of a structural equation is expressed in the formalism. Since Lp is
a propositional language, A = ¢ is not a formula of Lp. Having defined
the notion of structural equation, we can now define the notion of causal
model.

Definition 35. Causal Model M

Let M be a set of structural equations, based on the language Lp. For an Lp
sentence ¢, Var(¢) is the set of propositional variables which occur in ¢. M
is a causal model iff it satisfies two conditions:

(1) For any A € P, there is at most one ¢ € M such that ¢ has the logical
form A = ¢.

(2) If A = ¢ is a member of M, then there is no ¢’ such that (i) ¢ and ¢’
are (classically) logically equivalent, and (ii) Var(¢') C Var(¢).

In brief, a causal model M is a set of structural equations such that every
propositional variable in £p has at most one occurrence on the left-hand
side of a structural equation in M. Further, no structural equation in M
must have vacuous occurrences of a propositional variable. We call the
occurrence of a variable in an equation A = ¢ vacuous iff the value of ¢ is
independent of the value of that variable.

A causal model M is uninterpreted in the sense that there is no valuation
of the variables associated with it. A causal models (M, V), by contrast,
contains a valuation V of the variables in terms of literals. For simplicity,
we use the term causal model for both interpreted and uninterpreted causal
models.
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3 Natural Deduction

In this section, we set forth a system of natural deduction for reasoning
with structural equations. Suppose I’ is a set of Boolean formulas in the
language Lp. Further, suppose M is a causal model, as just defined. Which
formulas can be derived from I' and M? We aim to answer this question by
devising a system of natural deduction that defines a relation I -y ¢.

Obviously, our system needs to include the inference rules of the Boolean
connectives: negation, disjunction, and conjunction, including rules for the
introduction and elimination of a contradiction L. We assume the reader is
familiar with some formulation of these rules.

There remains the logical symbol = of nonsymmetric determination. This
is the genuinely novel logical symbol of causal models. Fortunately, reason-
ing with structural equations is static in the following sense: we normally
do not infer a new structural equation from a given set of structural equa-
tions. In light of this, there is no need for an introduction rule of the logical
symbol =. Another reason for not having such a rule will be given at the
end of this section.

Which elimination rules best capture our inferences from a set of structural
equations? Let us start with a simple proposal:

A=¢ ¢
T

In words, if A = ¢ is a member of M and ¢ can be derived, then A. In
addition to this rule, we need an inference rule for deriving —A:

A=¢ ¢
ﬂA ’

However, this pair of inference rules fails to break the symmetry between
the left-hand and the right-hand side of a structural equation. We could
still draw inferences from effects to causes, and so go against the direction
of causation.

For illustration, let us study the model of a concrete causal scenario: two
kids are throwing rocks at a bootle, which shatters eventually. Suzy’s rock
hits the bottle before Billy’s does. For this reason, we think that Suzy’s
throw is a genuine cause, while Billy’s throw is preempted. Following
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Halpern and Pearl (2005, pp. 861-4), we model this scenario using the fol-
lowing variables:

® ST: Suzy throws her rock.

BT: Billy throws his rock.

SH: Suzy’s rock hits the bottle.

BH: Billy’s rock hits the bottle.

BS: the bottle shatters.

The dependences among these variables may be represented by the follow-

ing graph:
\

o

Figure 86: Causal graph of the rock-throwing scenario

The causal model M is given by the following set of structural equations:

SH =ST
BH = BT N ST
BS =SHV BH

Now, suppose we know that the bottle shattered, but have no direct infor-
mation about the other events. The premise set I' is thus given by {BS}.
Then let us start a subproof with the assumption =ST A =BT (which says
that Suzy does not throw her rock and Billy does not throw his either).
From this assumption, we can derive —=BS (which means that the bottle
does not shatter). This conclusion contradicts the single member of our
premise set I' = {BS}. By Negation Introduction, we can therefore infer
—(=ST A =BT). From this, we can derive ST V BT, which says that Suzy
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or Billy throws a rock. Clearly, we have inferred a sentence about potential
causes from a sentence about an effect. The above rules fail to express the
nonsymmetry of structural equations.

Therefore, we need to impose further constraints on the application of the
above rules. Let Var(I') be the set of propositional variables which occur
in at least one formula of I, our set of premises. Then we require that a
structural equation A = ¢ can only be used if A has no occurrences in any
formula of I':

w [A ¢ Var(T)] (= Elim,)
ALA_'(P [A ¢ Var(T)]. (= Elimy)

This simple constraint on the application of the inference rules for = does
the trick. It blocks inferences from effects to causes, but allows causal rea-
soning from causes to effects. The constraint applies to all inferential steps
in the deduction, including the inferences in subproofs.

To resume our running example, suppose once more I' = {BS} (which
means that the bottle shatters). Then the constraint [A ¢ Var(T')] disallows
using the structural equation BS = SH V BH in whatever derivation from
the premise set {BS}. For Var(I') = {BS} and BS occurs on the left-hand
side of the structural equation in question. Hence, there is no way to infer
STV BT from BS. Abductive inferences—which go from effects to causes—
are blocked, as desired.

It is worth noting that the constraint [A ¢ Var(T')] translates the operation
of an intervention into the language of natural deduction. Recall that, in the
standard account, an intervention on a contextualized causal model (M, if)
by X = ¥ assigns a specific value to the variable X—for all X that are a
member of X—such that any assignment by the function Fx is overruled.?
Put simply, the structural equation defined by Fx becomes irrelevant once
we intervene on X. In a similar vein, the structural equation A = ¢ be-
comes irrelevant if we make an assumption about A in the premise set I'.
This set thus expresses an intervention on certain variables in P, which may
well be logically complex in the sense of containing disjunctions and con-
junctions.

3See Halpern and Pearl (2005, Sec. 2) or Pearl (2009, Ch. 7).
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Let LC be the logic whose inference rules are given by the standard natural
deduction rules for Boolean connectives, extended by the rules (= Elim;)
and (= Elimyp). LC simply stands for the logic of causal models. The definition
of a derivation in LC is now straightforward:

Definition 36. I' -y, ¢

Let I be a set of Lp sentences, and let ¢ be such a sentence. M is a causal
model, based on the language Lp. Let Lpy be given by the set of Lp sen-
tences united with M. We say that ¢ is derivable from I and M—and write
I' Fp ¢g—iff there is a tree of Lpy sentences which satisfies the following
conditions:

(1) The topmost sentences are either in I' U M or discharged by an infer-
ence in the tree.

(2) The bottommost sentence is ¢.

(3) Every sentence in the tree, except ¢, is a premise of an application of
an inference rule of LC such that the conclusion of this application
stands directly below that sentence.

We write I' =) ¢ instead of M,T' = ¢ or MUT ¢ in order to empha-
size that M and I contain different types of premises. The next step is to
introduce the semantics of LC.

Let us finally resume the discussion of an introduction rule for the equal-
ity symbol. If such a rule was available, we could derive new structural
equations from a given set of such equations. Why is this not desirable?
Following Halpern and Pearl (2005, p. 847), we take a structural equation to
represent a ‘distinct mechanism (or law) in the world’. We further assume
that such mechanisms are elementary in the sense that the causal model
does not provide us with any information about any submechanism. The
structural equations of a causal model are thus comparable to atomic sen-
tences in truth-value semantics: as atomic sentences are used to explain the
semantics of logically complex sentences, so are structural equations used
to analyse complex causal inferences and judgements. A derived structural
equation would not be elementary anymore.
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4 Semantics

Recall that a structural equation A = ¢ in M simply pairs a propositional
variable A with a propositional formula. We can therefore define the se-
mantics of structural equations in terms of the semantics of propositional
logic. As is well known, the semantics of a propositional language centres
on the notion of an assignment of truth values to the propositional vari-
ables. Deviating from the simplified semantics in Chapter 2, we will use
truth-value assignments instead of valuations V in terms of literals. The
reason for this deviation is to achieve better alignment with the standard
format of propositional logic. The equivalence between the two semantics
is easy to show.

A value assignment v : P +— {T, F} maps the set P of propositional vari-
ables to the set of truth values. This in mind, we define what it is for a
valuation v to satisfy a structural equation:

viEA=¢iff, v = A iff v [=¢ ¢ (Defv = A = ¢)

In simpler terms, the valuation v satisfies the structural equation A = ¢ iff
both sides of the equation have the same truth value on v. Notably, at this
stage, the semantics of = does not differ from the semantics of the standard
biconditional < of classical logic. = stands for the satisfaction relation
in classical propositional logic. Deviating from the simpler semantics in
Chapter 2, we use truth-value assignment instead of valuations V' in terms
of literals. The reason for this deviation is to achieve better conformity to
the standard format of the semantics of propositional logic.

The satisfaction relation for sets which contain propositional formulas and
structural equations can now be defined in the standard way. Let A be a
set of formulas such that any 6 € A is either an £p formula or a structural
equation based on Lp.

v = Aiff, foralld € A, v = 6. (Defv |= A)

It seems as if we could define the relation of logical entailment in a straight-
forward manner as well:

A= ¢iff, forallvst. v = A0 = ¢.

However, this relation of logical entailment fails to capture the nonsym-
metry of the equality symbol in a structural equation. For a valuation v
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satisfies a structural equation A = ¢ iff v satisfies A <+ ¢. The two formu-
las have the same truth conditions.

How can we express the nonsymmetric determination of the equality sym-
bol = within a relation of entailment? Recall that we view the premise set
I'—with regard to the relation I' -); ¢—as expressing an intervention on
the propositional variables which have occurrences in I'. Once we inter-
vene on a variable A, the structural equation determining A—if there is
one—becomes irrelevant for the determination of A. Hence, we can say
that a possibly complex intervention I' on the causal model M turns M into
a set Mr:

Mr={c|lceMo=A=¢, and A ¢ Var(T)}. (Def Mr)

Mr is the subset of M such that A = ¢ is in Mr iff A does not occur in any
formula of I'. Using this operation on a set M of structural equations, we
can define the relation of entailment for our logic LC:

Definition 37. T =) ¢

Let I' be a set of Lp sentences and let ¢ be such a sentence. M is a set of
structural equations, based on the language £p. We say that ¢ is entailed by
I'and M—and write T’ |=)1 ¢—iff, for all valuations v such thatv = T'U Mr,

v = ¢.

Notice that the nonsymmetry of = comes into play through an intervention
on M, which is expressed by the operation of turning a set M of structural
equations into a set Mr of such equations. Mr is obtained from M by elim-
inating all structural equations that determine a variable that occurs in a
formula of I'. The union of I' and Mr plays a role that is analogous to the
notion of a submodel in Pearl (2009, p. 204).

Let us briefly relate the entailment relation just defined to the notation of
the simplified semantics from Chapter 2. Suppose the premise set I' is a set
of literals. Then it holds that I' =51 ¢ iff (M, T)[I'] = ¢. The equivalence
is easy to show. The deviation in notation is motivated by two reasons.
First, the present notation better conforms to standard logical notations.
Second, we want to generalize the semantics of causal models from Chapter
2: I may contain propositional formulas other then literals. Note that the
simpler semantics in Chapter 2 is contained in the present semantics of
causal models.



APPENDIX A. THE LOGIC OF CAUSAL MODELS 316
5 Soundness and Completeness

The relation I' |= ¢ of entailment is aimed at capturing the relation I' -y
¢ of derivability. Or shall we say that the derivability relation for causal
models is aimed at capturing the entailment relation? More important than
this question of priority is that semantics and proof theory are in harmony
with one another. We show soundness and completeness in this section.
Let I be a set of Lp sentences, M be as introduced above, and let ¢ be an
Lp sentence.

Theorem 2. Soundness
IfT Fp ¢, then T ‘:M ¢.

Proof. Soundness can be proven by induction on the number of inferences
in a derivation, as is standard. The inductive step for the inference rules
(= Elim;) and (= Elim;) is analogous to the inductive step for (— Elim) in
proofs of soundness in classical logic. Suppose I - ¢.

Induction basis: suppose the number of inferences is zero. Since ¢ € Lp,
this implies that ¢ € T'. So, the derivation consists of a single formula which
is a member of T'. By the definition of =p1, T' |=m ¢ iff, for all truth value
interpretations v, if v = T'U Mr, then v |= ¢. Since ¢ € T, it holds that, if
v =T UM, then v |= ¢. Hence, ' =1 ¢.

Induction step. Suppose we have a derivation of 1 inference steps. Let I be
the union of I and the set of assumptions that are not in I and so far undis-
charged. By the induction hypothesis, we know that, for all so far derived
sentences ¢, it holds that I =y . We need to show that, for any applica-
tion of an inference rule of LC, if the next inference consists in inferring J,
then we have I’ |=); 4. For the inference rules of the Boolean connectives
(including L), this demonstration does not differ from the corresponding
inductive step in the soundness proof for a natural deduction system of
classical propositional logic. We can therefore focus on the inductive step
for the inference rules (= Elimy) and (= Elimy).

Suppose the next inference step (following the n-th step in the derivation)
has the form

A=y ¢
— [A & Var(T)].

We need to show that, for all valuations v, if v = I" U Mr, then v = A.
Since there are no inference rules for the derivation of a formula of the type
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A = 1, the equation A = 1 is a member of M. Because of the condition
A ¢ Var(T), it must even hold that A = 1 is a member in Mr. By the
induction hypothesis, (i) I |=m 3. Suppose v is a valuation such that v =
I U Mr. Since the equation A = 1 is a member in Mr, this implies that
v = A = . Hence, by the semantics of =, (ii) A and ¢ have the same truth
value on the valuation v. Further, we can infer from (i) that (iii) v = ¥. So,
Y is true on v. Obviously, (ii) and (iii) imply that A is true on v. In symbols,
v = A. Thus, we have shown that, for all valuations v, if v = I’ U Mr, then
v |= A. This concludes the inductive step for the inference rule (= Elim;).
The demonstration of the inductive step for (= Elim;) is analogous.

Note finally that at the end of the derivation, when the last inference step
has been completed, I = T. All assumptions that are not in I' must have
been discharged. Therefore, by complete induction on the number of infer-
ence steps, I' = ¢. O

Theorem 3. Completeness
IfT |:M ¢, then T ¢.

The following proof exploits two facts. First, a structural equation A = ¢ is
satisfied by a truth value interpretation v iff A <+ ¢ is satisfied by v, where
> has its classical meaning. Second, propositional classical logic whose
logical symbols are the Boolean connectives is complete.

Proof. Suppose I' =m ¢. Hence, by definition of the entailment relation
=, for all valuations v such that v = T U Mr, v |= ¢. Let M be the set
that we obtain from Mr by replacing every structural equation A = ¢ in Mr
by the classical biconditional A <+ . Since the truth conditions of = do not
differ from the truth conditions of <+, T' |=p ¢ implies (i) T U M} |=¢; ¢.
Further, let M{' be set the set that we obtain from M by replacing every
biconditional A <+ ¢ in My by (AV =) A (A V ¢). In symbols, (A V
)V (~AVY) € M{iff A « ¢ € M. Since (AV —¢p) A (mAV ¢p) and
A & 1 are satisfied by the same classical valuations v, (i) implies (ii) I' U
M} =¢; ¢. By completeness of classical propositional logic, this implies
that T U M[ ¢; ¢. Since classical propositional logic with just the logical
symbols V, A, and — is complete, I' U M{' F¢; ¢ holds, even if - is defined
in terms of the inference rules of the Boolean connectives (including L ). So,
(iii) there is a derivation of ¢ from I' U M{ using only the classical inference
rules of the Boolean connectives (including L).
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Now, we can show that T Fy (AV —¢) A (mAV ) forall A = ¢ € Mr.
Let us first show that (iv) I' -y AV =y if A = p € Mr. This can be done
by the following derivation:

1 A=
: [¥] i 4 (= Elimy) Bk
PV - AV oy (V Intro) VET (v Injcro)
1 AV =y (V Elim)

Note that ¢ V =1 can be derived from the empty premise set using only
inference rules of LC, which is indicated by the vertical dots on the left-
hand side. Analogously, we can show (v) -y AV ¢ if A = ¢ € M. From
(iv) and (v) we can infer Fp; (AV =) A (A V ¢) if A =p € M. Thus, we
have shown that (vi) T Fy (AV =) A (mAV @) forall A = ¢ € Mr.

Recall that we have shown that (iii) there is a derivation of ¢ from I' U M/
using only the inference rules of the Boolean connectives (including ). By
(vi), we know that we can transform this derivation into a derivation of ¢
from I and M in the logic LC. The transformation goes as follows: instead
of taking the sentences (A V =) A (A V ¢) in M’ as premises, we derive
these sentences from the structural equations in M using the inference rules
of LC, as just demonstrated. Hence, I' -7 ¢.

O]

6 Non-Binary Variables

So far, we have studied propositional causal models. In such a model, all
variables are binary. Let us now lift this restriction, and define causal mod-
els with non-binary variables. For this to be achieved, some elements of
first-order logic are needed. What is a non-binary variable in a first-order
language? Which causal scenarios require non-binary variables? Let us
study a simple and well-known example. A tower of a certain height casts
a shadow. The length of the shadow causally depends on the height of the
tower and the angle of the sun rays. These quantities may be represented
by first-order functions. More precisely, they can be represented by the
values of unary functions for certain arguments:
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* a: tower

® b: sunrays

¢ c: shadow

* hi(a): height of the tower

* n(b): angle between sun rays and surface of the earth

I(c): length of the shadow.

The values of these functions are governed by the following equation (in
which cot stands for the trigonometric function of cotangent):

I(c) = cot(n(b)) - h(a).

This equation can be read as a structural equation. For we think that the
length of the shadow causally depends on the height of the tower and the
angle of the sun rays, but not vice versa. So let us take the equation as a
structural equation in the technical sense of causal models. Also, let M be
the causal model that contains only this equation.

On this reading, I(c),n(b), and h(a) are the variables of M. It is important
to note that the variables of a causal model in a first-order language are not
variables in the sense of first-order logic at all. The variables of a determin-
istic causal model are rather ground terms with occurrences of a function
symbol. That is, they are terms (in the sense of first-order logic) which do
not contain any variables (in the sense of first-order logic) but at least one
function symbol. For clarification, we shall also speak of causal variables
when referring to the variables of a causal model.

It is important to note that not all ground terms in a first-order theory about
a causal scenario have a causal role. Take the ground terms for natural
numbers. These terms do neither causally determine other variables nor
are they causally determined. Likewise, we do not want to understand the
constant symbols for tower, shadow, and sun rays as causal variables. Is
the tower a cause of its height? This does not seem correct. Nor is it cor-
rect to say that all ground terms with an occurrence of a function symbol
are causal variables. The value of 2 4 2, for example, is not causally de-
termined, and so 2 + 2 should not be considered a causal variable. Hence,
choices are to be made as to which ground terms of a first-order theory are
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considered variables in the sense of the envisioned causal model. Causal
modelling is an art (Halpern and Hitchcock 2010).

When working with a concrete causal model, we may want to say that a
certain causal variable has a certain value. For propositional causal mod-
els, we can simply assert A if we want to say that the variable A has the
Boolean value T. For non-binary causal variables, a direct statement about
its value has the logical form f(c) = ¢/, where ¢ and ¢’ are individual con-
stants. Note that the equation symbol in such a sentence does not have a
causal meaning. If we say that the tower has a certain height, expressed
by a rational number and a unit of length, we are thereby not implying
that a rational number causally determines the height of the tower. Our
logical account of causal models with non-binary variables must therefore
distinguish between two equality symbols, one with a causal meaning and
another without such a meaning. Let us adopt := for the equality symbol
with a causal meaning. The above structural equation must then be rewrit-
ten as follows:

I(c) := cot(n(b)) - h(a).

If the causal model contains non-causal mathematical equations, these need
to be written with the standard equality symbol =, not with :=.

Each causal variable in a causal model has a well-defined range of val-
ues. We can take this into account by working with many-sorted first-order
logic. The distinctive feature of this logic is that we have several domains
of interpretation instead of a single domain. The different domains corre-
spond to different sorts. Any constant symbol must be of a certain sort.

The formation of atomic formulas is constrained by sorts: if R is a predicate
of type (01, ...,04), then R(ty, ..., t,) is a formula iff, foralli (1 <i < n), ¢
is a term of sort ;. In what follows, let D(0;) be the domain of interpreta-
tion of sort 0;. The type of a function f is of the form (o1, ...,0y) + 0. That
is, such a function is a mapping of the set D(07) X ... X D(0y) onto the set
D(o;). Obviously, if f is of the form (oy,...,0,) = 0j, then f(ty,...,t,) is
a term iff, forall i (1 < i < n), t; is a term of sort 0;. The term f(t1,...,t,)
itself is of sort 0.

The semantics of many-sorted first-order logic generalizes the semantics of
tirst-order logic in a straightforward manner. An interpretation of a many-
sorted language must respect that each constant c is of a certain sort ¢; such
that ¢ is interpreted in the domain D(c;). Likewise for predicates, function
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symbols, and variables.*

Many-sorted first-order logic has been argued to be reducible to standard
first-order logic. The precise meaning of this reduction is not obvious,
though.® In any case, it seems obvious that many-sorted logic allows us to
define the range of non-binary causal variables in a relatively straightfor-
ward manner. Suppose f(t,...t,) is a ground term and a causal variable
of a causal model. Let f be of the sort (01, ...,0,) + 0j. Then D(0;) is the
range of the causal variable f(t1,...t,).

We are now in a position to generalize our account of propositional causal
models to causal models with non-binary variables. Let £ be a many-sorted
language of first-order logic. Further, let V be a set of ground terms of L.
The members of V are considered variables of the respective causal model.
A structural equation is a sentence of the logical form

ti=1t

where t and t’ are ground terms. Moreover, t € V and ' must have at least
one occurrence of a ground term in V. No other formulas are structural
equations of £ with the set )V of causal variables. Note that a structural
equation thus defined has no occurrences of quantifiers or first-order vari-
ables.

Definition 38. Causal Model (non-binary variables)

Let M be a set of structural equations, based on the language £ with the set
V of causal variables. For an L term ¢, Var(t) is the set of causal variables
that occur in t. M is a causal model iff it satisfies two conditions:

(1) For any t € V, there is at most one o € M such that ¢ has the logical
form t :=t'.

(2) If t := t’ is a member of M, then there is no " such that (i) t’ = " on
all interpretations of the language £ and (ii) Var(t") C Var(t').

In brief, a causal model based on L is a set of structural equations such that
any term of V occurs at most once on the left-hand side of an equation in
M. Further, no structural equation in M must have vacuous occurrences of
a causal variable.

“See Enderton (2001, Sect. 4.3) for a textbook account of many-sorted first-order logic.
5See Barrett and Halvorson (2017) for a detailed discussion.
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Note that a structural equation in a causal model thus defined has no oc-
currences of quantifiers or first-order variables. Causal models with non-
binary variables may or may not be embedded into full first-order reason-
ing. In this chapter, we merely describe the core of causal reasoning with
non-binary variables which is based on a fragment of many-sorted first-
order logic. Inference rules for quantifiers do not belong to this fragment.

As for the elimination rule of :=, we adopt:

ti=t t=1t"

ry—y [t ¢ Var(T)] (Elim :=)

where I is the respective set of premises. This inference rule captures the
interplay of reasoning about non-causal equality statements and structural
equations. There is no need for an introduction rule of := for reasons ex-
plained in Section 3. Var(T') is the set of causal variables of M that occur in
at least one premise in I'.

This is the only genuinely causal inference rule needed in our account of
causal models with non-binary variables. All the other inference rules are
adopted from classical logic. At the very least, we need the introduction
and elimination rules for the non-causal equality symbol =. Once the set
of classical inference rules is specified, the definition of I' F3; ¢ in Sec-
tion 3 can be generalized to causal models with non-binary variables in a
straightforward manner.

It remains to specify the semantics of causal models with non-binary vari-
ables. Recall that we defined the semantics of propositional structural
equations A = ¢ in terms of classical interpretations of a propositional
language. Likewise, we can define the semantics of a structural equation
t := t' in terms of classical interpretations. Let Z be a classical, model-
theoretic interpretation of £. Then equation ¢ := ' is true on Z iff t and #/
designate the same object on the interpretation 7.

Note, furthermore, that the set Mr (used above in the definition of =y)
remains well defined in the present setting of non-binary variables. Mr is
simply the set of structural equations of M such that no causal variable of
M occurs in any sentence of I'. Since V is a set of ground terms, we can even
represent an interpretation of M by a set V of literals in a manner analogous
to the propositional case. Then the set V,—which represents the core of V
that remains unchanged in an intervention by a—remains well defined too.
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Since Mr remains well defined, we can easily generalize the definition of
I' =M ¢ in Section 4 to causal models with non-binary variables. We merely
need to replace classical Boolean interpretations of £p with model-theoretic
interpretations of L. Likewise, the proofs of soundness and completeness
for causal reasoning with binary variables require only minor modifica-
tions to be generalized to the non-binary case. We leave this as an exercise
to the reader.



Appendix B

Belief Revision Theory

In this appendix, we define the revision of a ranked belief base in a fully
explicit manner. A ranked belief base is one with different levels of prior-
ity among its members. Our theory of causation is devised for belief bases
which are furnished with such a priority ordering. For this reason, we con-
fine ourselves to studying the revision of ranked belief bases. Then we
define an epochetic conditional for ranked belief bases in a more explicit
manner. This definition underlies our reductive analysis in Part II.

1 Revision of a Ranked Belief Base

In view of the Levi identity—which says that revisions may be defined in
terms of contractions and expansions—we can focus on belief base contrac-
tions and thereby define a belief base revision scheme. One way to obtain
the contraction of a belief base H by a sentence A goes via the notion of a
remainder set H1 A. The remainder set H_L A contains all maximal subsets
of H which do not entail A. In formal terms:

Definition 39. H1 A
Let H be a set of sentences and A a sentence. H' € Hl A iff

(1) H CH

) A ¢ Cn(H)

324
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(3) thereisno H” such that H' € H” C Hand A ¢ Cn(H").

Condition (2) is to ensure that no member of the remainder set entails
the sentence to be retracted. The rationale for condition (3) is to retain as
many of the current beliefs as possible—without retaining the sentence to
be retracted—in an operation of contraction. Belief changes are guided by
the maxim of minimal mutilation, which goes back to Quine (1961).

Let us now generalize the notion of remainder set to belief bases with a
ranking of epistemic priority. Let H = (Hj,..., H,) be a ranked belief
base. Thatis, Hj, ..., H, are sets of sentences which are explicitly believed,
and the indices represent an epistemic ranking of these beliefs. Hj is the
set of the most firmly established beliefs, the beliefs in H, have secondary
priority, etc. More formally, we can say that the beliefs of a ranked belief
base are ordered by a strict weak ordering.!

We define the remainder set of a ranked belief base as follows:

Definition 40. HL A
LetH = (H,..., H,) be a ranked belief base and A a sentence. H' € HLA
iff

(1) H' = (H},..., H))

(2) foralli (1<i<mn),H{U...UH! € (HiU...UH;)LA.

This definition is motivated by the following principle: when retracting
a belief A, we should retain the more firmly established beliefs if possi-
ble, while the less firmly established ones may be more readily given up.
Suppose some beliefs have to be given up because H; U ... U H, entails
A. Then, if level i is above level j, we should hold on to beliefs at level i
more firmly than to those at level j. For a simple belief base with an upper
level of laws and a lower level of presumed facts, this comes down to the
requirement that a rational epistemic agent holds on to beliefs about laws
more firmly than to those about presumed atomic facts. Suppose we want
to contract H = (H;, Hy) by A. By assumption, neither H; nor H, implies
A, while H; U H, does. Condition (2), then, entails that H; is a member of

1< is a strict weak ordering iff it is binary, transitive and asymmetric, and the incompa-
rability relation I(x, 8) <> = (2« < B) A = (B < a) is transitive. Such an ordering is also
called modular.
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all H € HLA. No sentence in Hj needs to be retracted. But we have to
give up at least one sentence in Hp. Consequently, H» is not a member of
anyH e HLA?

We are not done yet. The ranked remainder set H_L A is not a ranked belief
base, but rather a set of such belief bases. To define the contraction of a
ranked belief base H by a sentence A in such a manner that we obtain a
ranked belief base, we select a specific member of the ranked remainder
set HL A. This type of contraction is relative to what’s called a selection
function:

H-,A=0cHLA. (Def +4)

The selection function ¢ picks out a specific element of the remainder set
H_1A. The contraction operation defined by such a selection function is
also referred to as maxichoice contraction. Such a contraction allows for a
maximally conservative way of retracting a belief: as many of the present
beliefs as possible are retained. This behaviour turns out desirable for our
analysis of causation, particularly so when we come to analyse a combina-
tion of a conjunctive causal scenario with overdetermination. In making the
relativization to a selection function notationally explicit, we deviate from
standard AGM notations. The selection function, however, is a mere aux-
iliary concept which will drop out of the final definition of our epochetic
conditional 3

For the expansion of H, we adopt the following definition:
H+ A= ({A},Hy,..., Hy). (Def +)

Alternatively, we may want to assign a specific level of epistemic priority
to the epistemic input A, which would result in an expansion operation
indexed by some level i. Such a relativization, however, is not needed for
the analysis to follow. Now that contractions and expansions have been

2Qur notion of a ranked remainder set is inspired by Brewka (1991), but the resulting
belief revision scheme is not identical with the one defined in Brewka (1991). While the
notion of remainder set is standardly defined for belief sets and flat belief bases, the notion
of remainder set of a ranked belief seems to be a genuine contribution to the literature by
us.

3The expert reader may recall the following problem with maxichoice contractions of
belief sets when used to define belief revisions via the Levi identity. For all sentences B, B
or ~Bisamember of K« A = (K= —A) + A. Abelief revision by A, defined by maxichoice
contractions, makes us opinionated about everything. This problem, however, does not
arise for belief bases.
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defined, the definition of belief base revision via the Levi identity falls into
place:
Hx, A= (H+,A)+ A. (Def %)

For the belief set K(H) of a ranked belief base H we define:
K(H) = Cn(UH).

K(H) is thus given by the classical logical closure of the union of all compo-
nents of H. Now we can distinguish between belief changes of belief bases
and changes of corresponding belief sets. The latter are defined as follows:

KH)+,A=KMH-=,A)
KH)+A=KH+ A).

This completes our study of belief changes with an underlying ranked be-
lief base.

2 Epochetic Conditionals

An important lesson of the previous section is that there may well be sev-
eral ways to contract a belief base by a certain proposition. We have there-
fore defined a contraction operation which is relative to a selection func-
tion, as is standard. Our definition is a generalization of the contraction
operation for flat belief bases to belief bases with an epistemic ranking.

The selection function remains implicit in the discussion of all causal sce-
narios in Part II, simply because there is no need for an explicit discussion.
This function is not relevant, for example, to our solution to the problem of
spurious causation. We have therefore omitted the selection function in the
definition of epochetic conditionals in the main text of Part II.

At the same time, notice that some selection function is present in our non-
reductive analysis of causation in Part I. In this analysis, we explicitly take
into account that there may be several causal models (M’, V') which are
uninformative on the candidate cause and its effect. The selection function
therefore becomes relevant when we explain how causal models (M, V)
may be grounded and verified by epistemic states which do not contain
any causal notions (see Section 3 in the Conclusion). For this reason, we
will now define an epochetic conditional which is relative to a selection



APPENDIX B. BELIEF REVISION THEORY 328

function. Then we lift the relativization by existential quantification over all
selection functions which satisfy the constraints of the epistemic ranking.

We define a conditional with the following intuitive meaning: A >, C iff,
after suspending any beliefs in K(S) as to whether A and C are true or false
(using 0), we can infer C from A in the context of the remaining beliefs. In
more formal terms:

Definition 41. Belief function B(A)
Let A be a sentence and S an epistemic state.

A if A € K(S)
B(A)=<-A if-Ac K(S)
1 otherwise.

A>, CeK.(S) iff Ce (K(S)+sB(A)VB(C))+ A. (SRT,)
Equivalently,

Ao C € Ko (S) iff (K(S) <o B(A)VB(C)),AFC

where I~ designates the relation of provability in classical logic. The first
step of (SRT,) consists in an agnostic move which lets us suspend judgement
about the antecedent and the consequent. The contraction by B(A) V B(C)
gives us an epistemic state in which we do not believe A, B, = A, or —B.

Once we have suspended judgement about antecedent and consequent, we
check whether or not we can infer the consequent C from the antecedent A
in the context of the remaining beliefs of the epistemic state. If so, A >,
C € K5 (S). Otherwise, A >, C ¢ K~(S). K5 (S) is the belief set of the
epistemic state S, extended by the Ramsey Test for some conditional. The
conditional > is obviously relative to a selection function ¢. To obtain our
intended analysis of causation, we eliminate the relativization by means of
existential quantification:

A > C € K5 (S) iff there is o such that (SRT)
C € (K(S) =+ B(A) VB(C)) + A.

Suppose now epistemic state S is given by a ranked belief base H. Then we
obtain:

A> C e K- (H) iff thereisos.t. C € (K(H) -, B(A)V B(C)) + A.
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This is the definition of our strengthened Ramsey Test upon which our
Humean analysis of causation is built. The present definition is to be read
as a precise formulation of the corresponding definition in the main text. In
the latter definition, we have omitted reference to the selection function ¢
for simplicity.

Some readers may be interested in the following logical subtleties. First,
Gérdenfors (1986) proved a triviality theorem concerning his original for-
mulation of the Ramsey Test in Gardenfors (1978). Recently, however, there
have been various, apparently successful attempts at defending the Ram-
sey Test in light of this result (see, e.g., Bradley (2007), Leitgeb (2010), and
Rott (2011)). Notably, Hansson (1992) has shown how switching from belief
sets to belief bases allows us to avoid the triviality result. More specifically,
we have shown that our strengthened Ramsey Test avoids Gardenfors’s
triviality result in Andreas and Giinther (2019).

Second, we use the notation K(H) <+ A as shorthand for the belief set which
results from the contraction of the belief set which is generated by the belief base H.
This notation may be criticized for lacking mathematical rigour. In mathe-
matics, we would assume that K(H) =+ A is well defined for all belief sets K
for which there is H such that K = K(H). The value of a complex function
f(g(a)) depends only on the object designated by g(a), but not on the object
a. This condition is violated for the complex function K(H) <+ A since one
and the same belief set may be generated by different belief bases, which
in turn yield different contractions by A. The problem may be resolved by
defining belief base contractions and revisions as operations on an ordered
pair (K(H), H). For simplicity, we leave the notation as is.*

Third, there are epistemic states for which we have both A > B and
A > —B, as a result of the quantification over selection functions. This
property, however, does not result in an inconsistency of our Ramsey Test
for epochetic conditionals since we do not say that all members of the logi-
cal closure of K(H) U K. (H) are to be accepted.

“In his Textbooks of Belief Dynamics, Hansson (1999, p. 306) uses a notation similar to ours,
while noting that the belief set to be contracted must be understood as generated by a
specific belief base. Thanks to David Makinson for communicating the issue to us.
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Proofs

1 Chapter2

Proposition 1. Suppose (M, V) is uninformative on the literals L4 and Lg.
Further, suppose (M, V U{L4}) F Lp. Then, for any deduction of Lg from
(M, V U{L,}), there is an undirected path (A, Ds,...,D,, B) (n > 0) of
variables such that, if n > 0, the deduction contains an intermediate con-
clusion for each variable Dy, ..., D,.

Proof. Suppose (M, V), Ly, and Lp are as explained in the proposition. Fur-
ther, suppose D is a non-redundant deduction of Lg from (M,V U{L})
in our system of natural deduction for causal models. The deduction of
Lp, then, consists of several branches. Each branch starts with a premise in
{LA} UV or an assumption of a subproof, and goes to Lp. Since Lp is not
a logical truth, at least one branch must start from a premise in {La} U V.
Since (M, V) is uninformative on Lp, D must contain at least one branch
which starts from L 4. Each branch of D contains a sequence (Lp,,...,Lp,)
of inferential steps to a literal such that Lp, is inferred before Lp, iff i < j.
Suppose the sequence (Lp,,...,Lp,) (k > 1) of inferential steps belongs to
a branch in the deduction D which goes from L4 to Lg. Note that variable
D; is different from variable A since, by assumption, the sequence does not
contain the premise from which the branch starts. It only contains the liter-
als inferred in the branch, omitting the trivial inference to the top element
of the branch.

330
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Since the causal model (M, V U {L4}) may contain the structural equation
of A as well as structural equations of variables of the literals in V, we need
to consider forward and backward-directed causal inferences. Causally
forward-directed inferences are drawn by the two elimination rules for
structural equations:

A=¢ ¢ A=¢ ¢
A —A

These two inference rules are also used for backward-directed inferences.
The pattern of such an inference is as follows: we start a subproof with
an assumption ¢. Then use the classical Boolean inference rules and at
least one structural equation to infer a forward-directed conclusion from ¢.
Then we show that ¢ is classically inconsistent with V.U {L4} or a causally
forward-directed conclusion which has been drawn from V U {L 4 } and the
structural equations in M. Classical inconsistency means that a contradic-
tion can be derived using just the Boolean inference rules of classical logic.
The inference rules for classical implications cannot be used since we have
no classical implications in our logic of causal models.

Let us first assume that the deduction D does not contain proofs by con-
tradiction. We prove by complete induction the following claim for the
sequence (Lp,,...,Lp,) of inferential steps (which corresponds to a branch
from L4 to Lp in the deduction D, as explained above): for each inferen-
tial step to Lp,, there is an undirected path between A and D; in the causal
graph of M.

Induction base: we show for D; that there is an undirected path between
A and D;. To infer Lp, directly, we need to use the structural equation
of D1, which has the logical form D; = ¢. To use the structural equation
D; = ¢ for an inference, ¢ or —¢ needs to be inferred. Since the sequence
(Lp,,-..,Lp,) corresponds to a branch which starts with the premise L,
and since D; is the first literal inferred in the branch, A must occur in ¢. By
our explanation of causal graphs in Section 2, this in turn implies that there
is a directed edge from A to D; in the causal graph of M.

Induction step: suppose there is an undirected path between A and the
variable D;, where D; is a variable for which we have an intermediate con-
clusion in the sequence (Lp,,...,Lp,), where 1 < i < k. We need to show
that there is an undirected path between A and the variable D;;; in the
causal graph of M. The proof of this is analogous to the proof of the in-
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duction base. Note that Lp,,, is inferred in the branch from L4 to Lg to
which the sequence (Lp,,...,Lp,) corresponds. To infer Lp, ., in a direct
deduction, we need to use the structural equation of D;;;, which has the
form D; 1 = 1. Notice that the inference to Lp,,, occurs after the inferential
step to Lp, such that there is no inferential step to another literal between
these two steps—in the branch from L, to Lp in the deduction D. This
implies that the inference to ¢ or - relies on Lp, such that D; occurs in
. By our explanation of causal graphs in Section 2, this implies that there
is a directed edge from D; to D;;;. Since we have assumed that there is
an undirected path between A and D;, this implies that there is an undi-
rected path between A to D; 1 in the causal graph of M. This concludes the
induction step.

We have thus established the claim of Proposition 1 for non-redundant de-
ductions which are free of proofs by contradiction. Let us now lift the as-
sumption that no proofs by contradiction are used.

Induction base: we distinguish two cases: (i) Lp, has been inferred directly,
that is, without proof by contradiction. (ii) Lp, has been inferred by a proof
by contradiction. Case (i) has just been dealt with.

Suppose we have case (ii). This means that there is a subproof which starts
with an assumption i and which ends with the conclusion of a sentence
equivalent to =L 4. Since this conclusion directly contradicts L4, = is in-
ferred. =4 has the form of a literal or is used to infer a literal by the classical
Boolean inference rules. This literal is the literal Lp, since it is the first lit-
eral inferred from A (except for L). The subproof of the indirect proof has
the form of a direct deduction which starts from ¢ and ends with a sen-
tence equivalent to =L4. Since we have already shown the claim of the
proposition for direct deductions, we know that that there is an undirected
path between the variable Dy (which occurs in ¢) and the variable A in the
causal graph of M.

Induction step: suppose there is an undirected path between A and the
variable D;, where D; is a variable for which we have an intermediate con-
clusion in the sequence (Lp,,...,Lp,) (1 < i < k). We need to show that
there is an undirected path between A and the variable D;; in the causal
graph of M. The proof of this induction step is obtained from the proof of
the induction base by replacing L4 with Lp, and replacing Lp, with Lp

i+1°

Since (Lp,,...,Lp,) represents the inferential steps of a branch from L4 to
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Lp in the deduction D, the variable Dy is the variable B. We have thus
established the claim of Proposition 1 for non-redundant deductions. Since
any redundant deduction can be transformed into a non-redundant one
by eliminating inferential steps, this implies the claim of Proposition 1 in
general. O

Proposition 2. Suppose (M, V) is uninformative on the literals L4 and Lp.
Further, suppose (M, V)[V][La] F Lg. Then, for any deduction of Lp from
(M, V)[V][L4], there is a directed path (A, D;,...,Dy,B) (n > 0) of vari-
ables such that, if n > 0, the deduction contains an intermediate conclusion
for each variable Dy, ..., D,. Such a directed path exists in the causal graph

of MVU{LA}‘

Proof. Suppose (M, V), Ly, and Lp are as explained in the proposition. Fur-
ther, suppose D is a non-redundant deduction of L from (M, V)[V][L4] in
our system of natural deduction for causal models. By Proposition 1, there
is an undirected path (A, Dy, ..., Dy, B) (n > 0) of variables such that, if
n > 0, the deduction contains an intermediate conclusion for each variable
Dy, ..., Dy. We can distinguish two cases: n = 0 and n > 0.

Suppose n = 0. This implies that (i) deduction D contains no interme-
diate conclusions concerning variables which are on an undirected path
between A and B. It also implies that (A, B) is an undirected path. Hence,
there is a directed edge between A and B. Suppose, for contradiction, the
edge goes from B to A and there is no edge from A to B. Notice now that
(M, V)[V][La] equals (Myyyp,y,V U{La}), where My, is obtained
from M by eliminating the structural equations of variables which have oc-
currences in V or L 4. Hence, (ii) deduction D is a non-redundant deduction
of Lg from (Myyr,},V U {La}). Now, the assumption that the directed
edge between A and B goes from B to A implies that (iii) the structural
equation of A is the only structural equation in M which has occurrences
of both variable A and variable B.

(i), (ii), and (iii) imply that deduction D uses at most the structural equation
of A, but no other structural equations. Since, however, the structural equa-
tion of A is not a member of My}, no structural equations are used in
the deduction D of Lp from (Myyy,}, VU {La}). Hence, VU{La} & Lp.
Since (M, V) is uninformative on the literals L4 and L, and since A and B
are two different variables, it holds that VU {L4} and Lg have no descrip-
tive terms in common. In other words, there is no variable D such that D
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occurs in the premises V U {L4} and the conclusion Lg. VU {Ls} - Lp,
therefore, implies that Lp is a logical truth. This contradicts the assumption
that Lp is a literal. Thus we have shown that the directed edge between A
and B must go from A to B, and so we have established the claim of the
proposition for n = 0 and non-redundant deductions.

Let us now deal with the case where n > 0. By Proposition 1, we know
that there is an undirected path (A, Dy, ..., Dy, B) (n > 1) of variables such
that the deduction D contains an intermediate conclusion for each variable
Dy, ..., Dy. Suppose, for contradiction, there is no directed path from A to
B. This implies that the undirected path (A, Dy, ..., Dy, B) has one of the
following properties: (a) It contains a directed edge from D; to A, while
there is no directed path from A to D; with corresponding intermediate
conclusions in the deduction D. (b) It contains a directed edge from D;;
to D; (i < n), while there is no directed path from D; to D;,; with cor-
responding intermediate conclusions in the deduction D. (c) It contains a
directed edge from B to D,, while there is no directed path from D, to B
with corresponding intermediate conclusions in the deduction D. (d) we
have a combination of (a), (b), and (c).

Let us begin with case (a). This case is almost perfectly analogous to the
case where we have n = 0 and an undirected path between A and B. Note
that (i) the structural equation of A is the only equation which has occur-
rences of both D; and A. Further, (ii) let us assume that the deduction of
D; from (My 1,V U{La}) contains no intermediate conclusions con-
cerning variables which are on an undirected path between A and D;. The
case where there are such conclusions can be reduced to case (b), which
will be dealt with below. (iii) (Myy1,},V U{La}) does not contain the
structural equation of A. (i), (ii), and (iii) imply that VU {Ls} F Lp,. Sup-
pose, for contradiction, variable D occurs in a literal in V. Then deduction
D is redundant or V is inconsistent. However, we have assumed that D is
non-redundant. And we have assumed that (M, V) is uninformative on L,
which implies that V' is consistent. Hence, D; has no occurrences in V. By
the same line of reasoning, we can show that D; has no occurrences in L 4.
Hence, D; has no occurrences in V U {L4 }. Together with VU {LA} - Lp,,
this implies that Lp, is a logical truth. This, however, contradicts the as-
sumption that Lp, is a literal.

Ad (b). In this case, the undirected path (A, Dy, ..., Dy, B) (n > 0) contains
a subsection (D, E, F) such that D — E <« F. There is no edge from E to
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D or an edge from E to F. This implies that the structural equations of D
and F cannot be used for a deduction of L from Lp or in a deduction of Lp
from Lg. Hence, the structural equation of E must be used in a deduction
of Ly from Lp via Lg. Let E = ¢ be the structural equation of E. Since the
edges go from D to E and from F to E, ¢ has occurrences of both D and F.

Further distinctions need to be made. Let us first assume deduction D does
not use reasoning by cases. As regards the structural equation E = ¢,
we can distinguish two cases. (i) Lp and, possibly, further intermediate
conclusions—which concern the direct ancestors of E but not F—determine
the truth value of ¢. (ii) Lp does not determine the truth value of ¢, even
in the context of other intermediate conclusions—which concern the direct
ancestors of E but not F.

Suppose we have (i). Then we can infer Lg, the value of variable E. But
(i) also implies that the truth value of ¢ does not depend on the value of
the variable F, given the causal model (M, V)[V][Ls]. Hence, we cannot
use the intermediate conclusion L to infer anything about the value of
variable F in the deduction D. This, however, contradicts the assumption
that (D, E, F) is a subsection of the undirected path (A, Dy, ..., Dy, B) such
that D contains intermediate conclusions about D+, ..., D,,.

Suppose we have case (ii). This implies that we cannot infer Lg from Lp,
even in the context of other intermediate conclusions—which concern the
direct ancestors of E but not F. Hence, Lg is not an an intermediate con-
clusion between Lp and Lr—in the deduction D. This conclusion contra-
dicts the assumption that (D, E, F) is a subsection of the undirected path
(A,Ds,...,Dy,B) such that D contains intermediate conclusions about
D4,...,D,.

Let us now lift the assumption that deduction D does not use reasoning
by cases. Then, by starting a subproof with an assumption of the form
Lg, we may be able to infer a sentence Lr by the equation E = ¢, Lp,
and, possibly, other intermediate conclusions—which concern the direct
ancestors of E but not F. This may be feasible since we may be able to infer
—Lg from E = ¢, ~Lr, Lp, and, possibly, other intermediate conclusions in
a subproof. Let Lr be the conclusion of such an indirect proof. However, the
problem of such a proof by cases concerning E is that we need to complete
another subproof which starts with a sentence equivalent to —Lg, and show
that the two subproofs result in the same final conclusion. Let L be the
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final conclusion of the two subproofs.

We show that there is an inferential path from a literal equivalent to —L to
L which corresponds to a directed path from E to G in the causal graph so
that the claim of the proposition remains true. Suppose, for contradiction,
there is no such path. Note, first, that (i) the inferential path of the second
subproof cannot go from the variable E to variable F. If this was the case,
we would have to infer in the second subproof a literal equivalent to —LF.
This, however, would imply that the inferences from Lp to Lr and to a
literal equivalent to —Lf are redundant since we could simply do reasoning
by cases with regard to the value of F right away. Recall that we assumed
that D is not redundant.

(i) and the assumption that there is no directed path from E to G with corre-
sponding intermediate conclusions implies that the inferential path from E
to G contains a section which goes along an undirected path D’ — E’ < F’
in the causal graph of M. With regard to this section we run now into the
same problem observed on the assumption that no reasoning by cases is
used: let E' = ¢’ be the structural equation of E’. If Ly and, possibly, other
intermediate conclusions determine the value of ¢/, then the value of E’ is
independent of the value of F'. In this case, we cannot infer anything about
F’ from the value of E’. If Lp and other intermediate conclusions do not
determine the value of ¢’, we cannot infer L/ from L/, even in the context
of other intermediate conclusions. In that case, there is no inferential path
from Ly to L via Lgs either. Thus we have derived a contradiction from
the assumption that there is no inferential path from a literal equivalent to
—LE to Lg which corresponds to a directed path from E to G in the causal
graph. This concludes the treatment of case (b).

Case (c) is analogous to case (b). If we have a combination of cases (a),
(b), and (c), then consideration of one of these cases suffices to obtain a
contradiction. This concludes the proof for n > 0.

We have thus established the claim of the proposition for non-redundant
deductions. Since any redundant deduction may be transformed into a
non-redundant one by eliminating certain inferential steps and correspond-
ing intermediate conclusions, this result implies the claim of the proposi-
tion for redundant deductions. Thus we have shown that the proposition
is true in general. O

Proposition 3. Let (M, V) be a causal model, which is uninformative on C
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and E. There is a deduction of E from (M, V)[V][C] such that the inferential
network of this deduction has the property that all nodes are on a directed
path from C to E iff E can be inferred from (M, V)[V][C] such that any
inferential step to a literal depends on C.

Proof. Subsequent to stating this proposition in Section 5, we made three
observations. (i) The inferential networks give us complete information
about direct and non-direct dependences among the inferred literals, in-
cluding dependences with respect to C. (ii) If there is a directed path from
literal C to literal D—in a network of a deduction from (M, @) [V][C]—then
we know that D inferentially depends on C. Finally, (iii) if literal D inferen-
tially depends on literal C, then there is a directed path from C to D in the
network of the corresponding deduction. With these observations at hand,
the proof is relatively straightforward.

For the forward direction, suppose there is a deduction of E from
(M, V)[V][C] such that the inferential network of this deduction has the
property that all nodes are on a directed path from C to E. By (i) and (ii),
this implies that all inferred literals in this deduction inferentially depend
on C. Hence, E can be inferred from (M, V)[V][C] such that any inferential
step to a literal (by a structural equation) depends on C.

For the other direction, suppose E can be inferred from (M, V) [V][C] such
that any inferential step to a literal (by a structural equation) depends on C.
Suppose, for contradiction, that the inferential network of this deduction is
not an active path in the sense of Explanation 1. By (iii), this implies that
there is an inferential step to a literal (by a structural equation) which does
not depend on C. This contradicts our assumption that E can be inferred
from (M, V)[V]|[C] such that any inferential step to a literal (by a structural
equation) depends on C. Thus we have obtained a contradiction. This
concludes the proof of Proposition 3.

U
Proposition 4. Whenever the inferential network of a deduction of E from

(M, V)[V]|C] has the form of a sequence, then this sequence is an active
path.

Proof. This proposition holds because, first, it follows from the definition
of an inferential network (£, D) and the definition of an intervention that
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the inferential network of any deduction of E from (M, V)[V][C] does not
contain a directed edge which goes to C. Hence, if the inferential network
has the form of a sequence, this sequence must start with C. Second, since E
is by definition the final conclusion of the deduction in question and since
the deduction is assumed to be non-redundant, the sequence must end with
E as the last element. So any inferential network—of a deduction of E from
(M, V) [V][C]—which has the form of a sequence, must have the form C —
... — E. And such a sequence is always an active path by Explanation 1.

O]

2 Chapter 3

Proposition 5. Let (M, V) be a causal model which is uninformative on C
and E. Suppose there is a deduction of E from (M, V)[V][C] such that this
deduction has an active path. Then there is such a deduction which is direct
with respect to all causal inferences.

Let us first explain the proof idea so as to give an overview. Call a proof
backward-directed iff it goes against the direction of causation. Such proofs
go along directed paths in the causal graph, but against the direction of
such paths. By contrast, a proof is called forward-directed iff it goes along
one or more directed paths in the causal graph. Backward-directed proofs
require subproofs, while forward-directed proofs do not. All direct proofs
are forward-directed.

We prove a lemma which basically says that any backward-directed proof
and any sequence of such proofs can be transformed into a direct proof
which is forward-directed. For example, if we can derive Lp from L, in a
backward-directed proof, then we can transform this proof into a direct
proof in which —L,4 is derived from —Lg. Most importantly, the direct
proof coming out of such a transformation uses only inferential steps which
are used in the backward-directed proof from which the transformation
started. To be precise, all inferential steps to a literal which are causal and
which occur in the direct proof have already been used in the backward-
directed proof. Recall that an inferential step is causal iff it uses a structural
equation directly, or indirectly in a subproof. Figuratively speaking, we can
reverse a backward-directed proof of Lg from L 4 in such a manner that we
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obtain a direct proof of =L 4 from —Lg. Notably, this reversal reuses certain
inferential steps of the backward-directed proof.

By means of this result, we can prove the contrapositive of Proposition 5:
if there is no direct proof of the effect which has an active path, then there
is no indirect proof of the effect with an active path either. To prove this
implication, suppose there is no direct proof of the effect which has an ac-
tive path. Then suppose, for contradiction, there is an indirect proof of the
effect E from the candidate cause C which has an active path. This proof
starts with the assumption —E. From this assumption —C is derived. Since
the presence of the candidate cause C serves as premise, we have obtained
a contradiction. From this contradiction we infer ——E, from which we infer
E.

This indirect proof contains a backward-directed derivation: —C is derived
from —E. We can turn this derivation into a proper proof of ~C from —E by
making —E a premise instead of an assumption in a subproof. By the above
lemma, the proof of —C from —E can be turned into a proof of E from C
such that all inferential steps which are causal have already been used in
the backward-directed proof of —=C from —E. Since the latter proof is taken
out of the indirect proof of E from C, (i) it holds that all causal inferential
steps of the direct proof have been used in the indirect proof of E from C
as well. Since we assumed that the indirect proof has an active path, it
holds that (ii) all causal inferential steps of the indirect proof depend on the
candidate cause. (i) and (ii) imply that the direct proof obtained from the
indirect proof has an active path. But this contradicts our initial assump-
tion, according to which there is no direct proof of the effect E which has
an active path. This contradiction concludes the proof of the contrapositive
of Proposition 5. Proposition 5 itself follows therefrom directly.

For simplicity, we have omitted the possibility of combining direct deduc-
tions with indirect ones in order to obtain a deduction of the effect which
has an active path. This possibility will be considered in what follows. Let
us begin with simple backward-directed deductions which result in a literal
and which require only a single inferential path.

Lemma 1. Suppose (M, V) is uninformative on the literals L, and Lg. There
is a directed path (B, Dy, ..., D, A) in the causal graph of My, but none
from A to B. Further, suppose (M,V U{L4})[V] F Lg such that there is
a non-redundant deduction D of L which contains a sequence of inter-
mediate conclusions (Lp,,...,Lp,). Finally, suppose, no other inferential
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pathways are used in the deduction D. Then (M, V U {-Lg})[V] F —La
such that there is a direct deduction of =L4 from (M, V U {=Lp})[V]. Itis
direct with regard to all inferential steps by a structural equation.

Proof. We study the deductive relation (M,V U {Ls})[V] F Lp—rather
than the relation (M, V)[L4][V] I Lg—in order to prove a general property
of backward-directed deductions. Since the causal model (M, V)[L4]|[V] is
obtained by an intervention on (M, V) with L4 and V, we cannot draw any
backward-directed inferences from L 4 in this model.

Note that causally backward-directed deductions go along one or more di-
rected paths, but go against the direction of such paths. They proceed in a
stepwise fashion via literals just as forward-directed deductions do. And
they rely on one or more indirect proofs. The subproof of such an indirect
proof goes in the direction of causation, though. Without loss of generality,
we assume that each backward-directed inferential step is made by a sep-
arate indirect proof. Let us take a closer look at the details of a backward-
directed deduction with the properties assumed in the lemma.

Let A = ¢ be the structural equation of A. By assumption, Lp, is inferred
from L4 by an indirect proof. Suppose (i) L, is a positive literal, which
means that Ly = A. Then Lp, is established in the formal deduction as
follows: we assume —¢, from which —A is derived. This contradicts the
premise A. From this contradiction we can infer ¢ via - —¢. From ¢ we can
infer Lp, since this literal is an intermediate conclusion and established by
an indirect proof in the deduction of Lg. The last inferential step is made in
the context of My U V.

Suppose now (ii) Ly = —A. To use —A in an indirect proof of Lp,, we
assume ¢, from which we infer A, which implies a contradiction with —A.
Thus we can infer —¢, from which Lp, is derived since this literal is an inter-
mediate conclusion and established by an indirect proof in the deduction
of Lp. Again, the latter derivation may use premises in V' and intermediate
conclusions from My U V.

Things are analogous for an inferential step from Lp, to Lp,,. Let D; = ¢;
be the structural equation of D;. If Lp, is a positive literal, we assume —¢;
in an indirect proof. Then infer —D;, which contradicts Lp,, and so we can
infer ¢; and Lp,,,. If Lp, is a negative literal, we assume ¢; in an indirect
proof. Then infer D;, which contradicts Lp,, and so we can infer —¢;. Since
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by assumption Lp,,, is inferred from Lp, by an indirected proof, we must
be able to infer Lp,,, from —¢;, where premises from My U V may be used
in this inference. There is no other way to infer Lp, , from Lp, by an indirect
proof.

i+1

Notice that these backward-directed inferential steps are inversions of
forward-directed inferential steps. If Lp, is inferred from A, we can first in-
fer =¢ from —Lp, and My U V since it holds that My UV, ¢ - Lp,. Second,
we can infer = A from —¢ and A = ¢. So, it holds that My UV, =Lp, = —A.
Most notably, the inferential step from —¢ to —A has been used in the sub-
proof of the indirect proof. Likewise, if Lp, is inferred from —A, then this
backward-directed inference uses the forward-directed inference from ¢ to
A by the structural equation A = ¢ in a subproof.

Things are perfectly analogous for each inferential step from a literal Lp, to
a literal Lp, . All these inferential steps are based on a forward-directed
inference from ¢; to D; or a forward-directed inference from —¢; to —D;.
Since Lp,,, is derived from ¢; (or —¢;), it holds that —¢; (or ¢;) may be de-
rived from —Lp,,, and My U V. Hence, there is a deduction of —~L4 from
(M,V U{=Lg}) which is forward-directed and contains the following se-
quence of intermediate conclusions: (—~Lg, =Lp,,..., 7Lp,, ~La).

O]

Let us now generalize this lemma, and lift the assumption that the
backward-directed deduction consists of just a single inferential path.

Lemma 2. Suppose (M, V) is uninformative on the literal L4 and a Boolean
formula @, where all variables which occur in ¢ are ancestors of A in
the causal graph of My. There are no directed paths from A to any of
the variables which occur in . Further, suppose (M, V U {Ls})[V] - ¢.
Let D be a corresponding non-redundant deduction such that all forward-
directed inferences by a structural equation are within an indirect proof.
Then (M, V U {-9})[V] = —La. And there is a corresponding deduction
such that all inferential steps by a structural equation are direct, and each
forward-directed inferential step to a literal by a structural equation is used
in a subproof in the deduction D.

Proof. Let (M, V), La, and ¢ be as assumed in the lemma. Then we know
that there is a derivation of i from L4, given My U V. Now, let us take —ip
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as a premise and the derivation of ¢ from L4, given My UV, as a subproof.
By Negation Introduction, we can infer -L4. Thus we have obtained a
deduction of =L 4 from =, given the premises in My U V. Hence, we have
shown that (M, VU {—¢})[V] F =L4.

Let us now take a closer look at the deduction of ¢ from L4 in the context
of My U V. Let D be a variable which is a direct descendant of a variable in
1y such that Lp is an intermediate conclusion in the deduction D of . Lp is
needed to infer ¥ in this deduction. By Proposition 1, we know that (i) any
deduction of a literal Lp from L4 goes along one or more undirected paths
between the variable A and the variable D. Furthermore, by Proposition
1 we know that (ii) intermediate conclusions are needed to infer a literal
Lp from L4 concerning the variables intermediate between D and A. Since
deduction D does not contain any forward-directed inferential steps in the
main proof, we know that (iii) all intermediate conclusions in this deduc-
tion from L4 to Lp are on a directed path from variable D to variable A in
the causal graph of My.

(i), (ii), and (iii) imply that (iv) deduction D contains one or more inferen-
tial pathways such that each sequence of causal conclusions—in the main
proof or a subproof within a proof by cases—goes against the direction of
a directed path from D to A in the causal graph of My. Hence, all causal
inferential steps—outside the subproof of an indirect proof—are backward-
directed. (An inferential step is causal iff it uses a structural equation di-
rectly, or indirectly in a subproof.) By the proof of Lemma 1, we know
that (v) such backward-directed inferential steps are inversions of forward-
directed inferential steps such that the latter are needed in the backward-
directed inferential steps. If Lp is inferred from L4 in a backward-directed
manner, then this inference is based on a forward-directed derivation in
which —L4 is derived from —Lp. By (iv) and (v), we have established that
(vi) the derivation of Lp from L4 is based on forward-directed derivations,
which may be used to construct a derivation of =L 4 from —=Lp.

So far, we have considered only a single inferential path from L4 to Lp. To
infer the formula ¢, more than one such path may be needed, though. Sup-
pose, for example, we have the structural equation A = B A F as equation
of A. Further, suppose My U V is agnostic with respect to both B and F.
From A we can then infer both B and F by an indirect proof then. In the
next steps, we can exploit the structural equations of B and F for further
backward-directed deductions. This gives rise to at least two different in-
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ferential paths, both of which start from A. And both inferential paths may
be needed in the deduction of .

Now, suppose we have the structural equation A = BV F. Again, sup-
pose My UV is agnostic with respect to B and F. Then we can infer BV F
from A. To exploit this disjunction, we have to start two subproofs: one
with the assumption B, another with the assumption F. The two subproofs
correspond to two different inferential pathways. Suppose we then infer
Lp and Lp in these pathways, respectively. In order to complete the proof
by cases, we need to derive Lp VV Lp by Disjunction Introduction in each
subproof.

Finally, note that these observations concerning the derivation of conjunc-
tions and disjunctions may be iterated and combined. Each backward-
directed inferential step from a literal may give rise to several inferential
pathways. And the structural equation of a literal may have a disjunction
of conjunctions on the right-hand side. A = (BA C) V F is a case in point.
However, the details of the structure of inferential pathways may not con-
cern us here for reasons which will become obvious shortly. But it remains
important to note that each backward-directed inferential step starts from a
literal, simply because each structural equation has a literal on the left-hand
side.

Let {D;,...,D,} be the set of variables such that each D; is a direct descen-
dant of a variable which occurs in ¢ and some literal Lp, is needed as an
intermediate conclusion to infer ¢. For all these literals, claim (vi) can be
established in the same way it has been established for Lp above. Hence,
(vii) for any literal Lp, needed as an intermediate conclusion in the deduc-
tion of ¥ such that D; is a direct descendant of a variable in 1, claim (vi)
holds: (M,V U {—=Lp,})[V] F —L4 such that there is a corresponding de-
duction which is forward-directed, where all causal inferential steps have
been used in the deduction D.

Since D; is a direct descendant of a variable which occurs in 1, there is a
structural equation D; = ¢; such that a variable occurring in ¢ occurs in ¢;.
Note that, from Lp, either —¢; or ¢; is inferred in the deduction of ¢ by an
indirect proof. Hence, the deduction D contains intermediate conclusions
equivalent to a formula with the following form: v(Si¢, ..., Su¢n), which
is a Boolean formula in which the formulas S;¢; are connected by disjunc-
tions and conjunctions but not negated. The components S;¢; make up the
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right-hand side of the structural equation of a variable D; which has the
properties specified above. S; is a mere placeholder for a negation symbol
which may or may not be present.

Since deduction D is non-redundant, each formula S;¢; is needed for the
deduction of ¢. It holds that Vjy U V,v(S1¢1,...,5.¢n) F . Hence, it
holds that (viii) Vyy UV, =9 F —v(S1¢1, ..., Su¢n). (ix) 7v(S11, ..., Supn)
is logically equivalent to a Boolean formula v'(=S1¢1, . .., 7Su¢,), in which
the formulas —5;¢; are connected by disjunctions and conjunctions but not
negated. Given our explanation of the variables D; (i < n), (vii) implies
(x) for all D;, My UV,=Lp, = =Ly such that there is a forward-directed
deduction. Further, note that (xi) Lp, = S;¢; since S;¢; is derived from Lp,
by an indirect proof. Finally, (viii), (ix), (xi), and (x) imply that that there is a
deduction of =L, from (M, V U{—¢})[V] such that all inferential steps are
forward-directed and used in subproofs in the deduction D. This concludes
the proof of the lemma.

O
We are now in a position to prove Proposition 5.

Proof. Let (M, V) be a causal model which is uninformative on C and E.
We prove Proposition 5 by showing that the following implication holds:
if there is no direct deduction of E from (M, V)[V][C] which has an active
path, then there is no indirect deduction of E from (M, V)[V][C] which has
an active path. To prove this implication, suppose there is no direct deduc-
tion of the effect which has an active path. Then suppose, for contradiction,
there is an indirect deduction of E from (M, V)[V][C] which has an active
path.

For the sake of generality, we need to consider combinations of forward-
directed and backward-directed deductions. The general form of such a
combination may be characterized as follows: we infer from My ;c; UV U
{C} some sentence ¢ such that this sentence concerns one or more vari-
ables which are intermediate between C and E in the causal graph My (c;.
Then we infer —p from My ;cy UV U {C, ~E}. Since the variables of ¢ are
intermediate between C and E and since E is a descendant of C, we need
backward-directed inferences for the latter deduction. The case where —C
is simply derived from My ¢y UV U{C,—E} is contained in this consid-
eration as a limiting case: we simply have ¢ = C then.
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In more formal terms, an indirect proof which combines forward-directed
and backward-directed reasoning looks as follows. We show (i) that
Myyicy UV U{C},—E F ¢ such that there is a corresponding deduc-
tion which contains one or more backward-directed derivations and which
satisfies the condition that each inferential step depends on C. Then we
show that (ii) My jcy UV, C I ¢ such that there is a corresponding deduc-
tion which is direct and which satisfies the condition that each inferential
step depends on C. These two deductions can be merged so as to obtain a
deduction of E from My ;c; UV U {C} which has an active path.

However, by Lemma 2 we can infer from (i) that (iii) My, UV U{C}, ¢ I
E such that there is a corresponding deduction which is direct and which
satisfies the condition that each inferential step depends on C. Notice that
MVU{C} uvu {C} F llJ and MVU{C} U V, l,lJ FH E 1mply that MVU{C} uvu
{C}  E by the transitivity of the deduction relation \-. Moreover, by (ii)
and (iii) we know that we can obtain a deduction of E from My c; UV U
{C} by merging two direct deductions both of which satisfy the condition
that each inferential step depends on C. The resulting deduction is direct
and satisfies the condition that each inferential step depends on C. But this
contradicts our initial assumption that there is no direct deduction of the
effect E which has an active path, and so we have obtained a contradiction.

Again, for the sake of generality, we need to also consider the case where
§ concerns variables which are descendants of both C and E. In this case,
both the deduction of —¢ from —E and the deduction of i from C may be
forward-directed. But the combined deduction contains an indirect proof
since we still need to assume —E in a subproof. Now, we need to distin-
guish two cases: (i) the deduction of i from C contains E as an interme-
diate conclusion. Then the indirect deduction via 1 would be redundant,
and cannot have an active path. (ii) The deduction of ¢ from C does not
contain E as intermediate conclusion. Then the inferential path from C to E
goes along a section of the form B — F < D in the causal graph of My (¢},
where F occurs in 3. But we have shown in the proof of Proposition 2 that
this is impossible (see discussion of case (b) in this proof).

Thus we have shown the above implication: if there is no direct deduction
of E from (M, V)[V][C] which has an active path, then there is no indirect
deduction of E from (M, V) [V][C] which has an active path. Hence, Propo-
sition 5.



APPENDIX C. PROOFS 346

3 Chapter5

Proposition 6. Suppose L4 and Lc are entangled in the causal model
(M, V). Let (My, Vi) and (Mg, Vi) be as explained in Section 2 of Chapter
5. Then it holds that

(1) <MN, VN U {LA}> = LC or <MN, VN U {Lc}> F LA, or bOth, and

(2) <ME, Ve U {LA}> |7z Lc and <ME, Ve U {Lc}> }f La.

Proof. Suppose Lc, L4, and the other symbols are understood as explained
in the proposition. First, we show claim (2). Claim (1) then follows from
claim (2), as we will show below.

Suppose, for contradiction, that (Mg, Vg U {La}) F Lc or (Mg, Vg U
{Lc}) F La. Without loss of generality, we assume (Mg, Ve U {Lc}) F La.
(The demonstration for the other assumption is completely analogous.)
By Proposition 1, this implies that there is a deduction D of L4 from
(M,V U{L.}) and an undirected path (C,D;,...,D;,, A) (n > 0) of vari-
ables such that D contains an intermediate conclusion for each variable
Dy, ..., Dy. Let us further assume that D is non-redundant. This assump-
tion will be lifted later on.

Since Mg does, by definition, not contain the structural equations of C and
A, there is no directed path from C to A, or vice versa, in the causal graph of
ME. Hence, there is a common effect E of A and C such that (i) deduction
D contains an inferential path from Lc to L4 which goes via E. (ii) This
inferential path contains a subsection (Lp, Lg, Lf) such that (D — E < F)
is an undirected path between D and F in the causal graph of M. And (iii)
there are no edges among D, E, and F other than (D, E) and (F,E). The
variables D and F may or may not coincide with the variables C and A,
respectively.

We have seen in the proof of Proposition 2 that (i), (ii), and (iii) imply a
contradiction. We have shown this when considering case (b) in this proof.
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Let us review here the proof idea. For simplicity, we assume Vg = @. The
general case where Vi may not be empty has been considered in the proof
of Proposition 2. Suppose (iv) no proof by cases is used to infer Lr. Then
no backward-directed inferences are available. We must therefore infer Lr
from Lg, which is inferred from Lp. But this is impossible: if we can infer Lg
from Lp by the structural equation of E, then the value of E is determined
by Lp, and thus independent of the value of F. No inference can be made
from Lg to Lr then. If, by contrast, the value of E depends on the value
of F in the context of Lp, then we cannot infer the value of E from Lp.
Finally, since there are no edges among the variables D, E, and F other than
the two edges (D, E) and (F,E), the structural equation of E is the only
equation which connects D with E, and F with E.

Let us now assume that (v) deduction D may contain one or more proofs by
cases. Then backward-directed reasoning becomes available with regard
to an assumption about E. This may be done in a subproof which starts
with the assumption Lg. The corresponding subproof may then contain an
inference from L and Lp to Lr. However, we need to do a second subproof
which starts with an assumption equivalent to = L. If the second subproof
starts with a backward-directed inference, then we would have to infer —Lp
in this subproof. This, however, implies that D is redundant since Ly V = Lp
is a logical truth in our logic of causal reasoning. But we have assumed that
D is non-redundant.

(vi) All inferences of the second subproof (which starts with an assumption
equivalent to —=Lg) must therefore be forward-directed unless we start a
second proof by cases. (vii) For such a second proof by cases, we would run
into the same problem just observed: there must be a subproof such that
all causal inferences in this subproof are forward-directed. Finally, (viii) it
must be possible to infer L 4 in both subproofs or another literal from which
L4 can be inferred. Otherwise, we could establish at most a disjunction of
literals by the proof by cases rather than the literal L4 in the deduction D.
(vi), (vii), and (viii) imply that there is a directed path from C to A in the
causal graph of Mg. Note, however, that this can be ruled out since Mg
does not contain the structural equations of C and A by definition. Thus
we have obtained a contradiction.

Let us finally lift the assumption that D is redundant. Since any redundant
deduction can be transformed into a non-redundant one by eliminating in-
ferential steps, a non-redundant deduction does not give us additional in-



APPENDIX C. PROOFS 348

ferential power over redundant ones. It must therefore also hold for redun-
dant deductions that (Mg, Ve U {Lc}) I L4 implies that there is a directed
path from C to A in the causal graph of Mg. Thus have obtained a contra-
diction for both redundant and non-redundant deductions. Hence, claim
(2) of the proposition.

By claim (2) we know that (i) any deduction of L, from (M,V U {Lc})
does not use an inferential pathway via literals whose variables are a de-
scendant of C or A. Likewise, (ii) any deduction of L¢ from (M, VU {LA})
does not use an inferential pathway via literals whose variables are a de-
scendant of C or A. Since, however, Lc and L, are by assumption en-
tangled, it holds that (M,V U {L¢c}) = Ls or (M,VU{La}) = Lc. By
soundness of our deductive system, this implies that (M, VU{Lc}) F L4
or (M,VU{La}) F Lc. By Proposition 1, this implies (iii) that there is a
deduction D’ of L from (M,V U {Lc})—or a deduction D" of L¢ from
(M,V U {Ls})—such that this deduction goes along one or more undi-
rected paths (A, Dy, ..., Dy, C) in the causal graph of M.

Without loss of generality, let us assume the first alternative. (The following
demonstration is completely analogous for the other alternative.) By (i)
and (ii) we know that the variables D, ..., D, are not descendants of A
and C in the deduction D’. Hence, neither the structural equations in Mg
nor the literals in Vg are used in the deductions D’. Claim (iii) therefore
implies that the inferential paths which correspond to D’ go along one or
more undirected paths in the causal graph of My, which represents the
inferential relations among variables which are a descendant of C or A in
the causal graph of M. In formal terms, (My, Vy U {Lc}) F La. Hence,
(MN, VN U{Lc}) F Lgor (Myn,VNU{La}) F Lc, or both. This concludes
the proof of claim (1) of the proposition. Thus we have established both
claims of the proposition.

O



Bibliography

Alchourrén, Carlos. E., Peter Gardenfors, and David Makinson (1985). On
the Logic of Theory Change: Partial Meet Contraction Functions and
Their Associated Revision Functions. Journal of Symbolic Logic 50: 510—
30.

Andreas, Holger (2010). Semantic Holism in Scientific Language. Philosophy
of Science 77(4): 524-43.

—— (2020). Dynamic Tractable Reasoning: A Modular Approach to Belief Revi-
sion. Cham: Springer.

Andreas, Holger and Lorenzo Casini (2019). Hypothetical Interventions
and Belief Changes. Foundations of Science 24(4): 681-704.

Andreas, Holger and Mario Giinther (2019). On the Ramsey Test Analysis
of ‘Because’. Erkenntnis 84: 1229-62.

—— (2020). Causation in Terms of Production. Philosophical Studies 177(6):
1565-91.

—— (2021a). Difference-Making Causation. Journal of Philosophy 118(12):
680-701.

—— (2021b). A Ramsey Test Analysis of Causation for Causal Models. The
British Journal for the Philosophy of Science 72(2): 587-615.

—— (2024a). A Lewisian Regularity Theory. Philosophical Studies 181(9):
2145-76.

—— (2024b). A Regularity Theory of Causation. Pacific Philosophical Quar-
terly 105(1): 2-32.

349



BIBLIOGRAPHY 350

—— (2025a). The Epochetic Analysis of Causation Compared to Counter-
factual Accounts. In PhilSci Archive, URL https://philsci-archive.
pitt.edu/26137/.

—— (2025b). The Logic Of Causal Models. In PhilSci-Archive, URL https:
//philsci-archive.pitt.edu/26213/.

—— (forthcominga). Actual Causation. dialectica .

—— (forthcomingb). Factual Difference-Making. Australasian Philosophical
Review .

Antoniou, Grigoris (1997). Nonmonotonic Reasoning. Cambridge, MA: MIT
Press.

Balzer, Wolfgang, C. Ulises Moulines, and Joseph D. Sneed (1987). An Ar-
chitectonic for Science. The Structuralist Program. Dordrecht: D. Reidel Pub-
lishing Company.

Barrett, Thomas William and Hans Halvorson (2017). Quine’s Conjecture
on Many-Sorted Logic. Synthese 194(9): 3563-82.

Baumgartner, Michael (2013). A Regularity Theoretic Approach to Actual
Causation. Erkenntnis 78(1): 85-109.

Baumgartner, Michael and Christoph Falk (2019). Boolean Difference-
Making: A Modern Regularity Theory of Causation. The British Journal
for the Philosophy of Science .

Beckers, Sander (2021). Causal Sufficiency and Actual Causation. Journal of
Philosophical Logic 50(6): 1341-74.

Beckers, Sander and Joost Vennekens (2018). A Principled Approach to
Defining Actual Causation. Synthese 195(2): 835-62.

Beebee, Helen (2004). Causing and Nothingness. In Causation and Counter-
factuals, edited by L. A. Paul, E. J. Hall, and ]J. Collins, pp. 291-308, Cam-
bridge, MA: MIT Press.

—— (2011). Hume’s Two Definitions: The Procedural Interpretation. Hume
Studies 37(2): 243-74.


https://philsci-archive.pitt.edu/26137/
https://philsci-archive.pitt.edu/26137/
https://philsci-archive.pitt.edu/26213/
https://philsci-archive.pitt.edu/26213/

BIBLIOGRAPHY 351

Bell, John L. (2023). Infinitary Logic. In The Stanford Encyclopedia of Philos-
ophy, edited by Edward N. Zalta and Uri Nodelman, Metaphysics Re-
search Lab, Stanford University, Fall 2023 edition.

Berto, Francesco and Daniel Nolan (2023). Hyperintensionality. In The Stan-
ford Encyclopedia of Philosophy, edited by Edward N. Zalta and Uri Nodel-
man, Metaphysics Research Lab, Stanford University, Winter 2023 edi-
tion.

Black, Max (1956). Why Cannot an Effect Precede its Cause. Analysis 16(3):
49-58.

Bradley, Richard (2007). A Defence of the Ramsey Test. Mind 116(461): 1-21.

Brand, Myles (1980). Simultaneous Causation. In Time and Cause, edited by
P. van Inwagen, pp. 137-53, Dordrecht: D. Reidel.

Brewka, Gerhard (1991). Belief Revision in a Framework for Default Rea-
soning. In The Logic of Theory Change, edited by André Fuhrmann and
Michael Morreau, pp. 206-22, Berlin: Springer.

Brewka, Gerhard, Jiirgen Dix, and Kurt Konolige (1997). Nonmonotonic Rea-
soning. An Overview. Stanford: CSLI Publications.

Briggs, Rachael (2012). Interventionist Counterfactuals. Philosophical Studies
160(1): 139-66.

Bromberger, Sylvain (1966). Why Questions. In Mind and Cosmos: Essays in
Contemporary Science and Philosophy, edited by R. Colodny, pp. 86-111,
Pittsburgh: University of Pittsburgh Press.

Carnap, Rudolf (1950). Logical Foundations of Probability. Chicago: Chicago
University of Chicago Press.

—— (1958). Beobachtungssprache und theoretische Sprache. Dialectica 12:
236-48.

Cohen, Jonathan and Craig Callender (2009). A Better Best System Account
of Lawhood. Philosophical Studies 145(1): 1-34.

Davidson, Donald (1969). The Individuation of Events. In Essays in Honor
of Carl G. Hempel, edited by Nicholas Rescher, pp. 216-234, Dordrecht: D.
Reidel Publishing Company.



BIBLIOGRAPHY 352

Dowe, Phil (1996). Backwards Causation and the Direction of Causal Pro-
cesses. Mind 105(418): 227-48.

—— (1997). A Defense of Backwards in Time Causation Models in Quan-
tum Mechanics. Synthese 112(2): 233—46.

—— (2000). Physical Causation. Cambridge: Cambridge University Press.

Dummett, Michael (1954). Can an Effect Precede its Cause? Aristotelian So-
ciety Proceedings Supplement 28: 27-62.

—— (1964). Bringing About the Past. Philosophical Review 73(3): 338-59.

Dwyer, Joseph R. and Martin A. Uman (2014). The Physics of Lightning.
Physics Reports 534(4): 147-241.

Elga, Adam (2001). Statistical Mechanics and the Asymmetry of Counter-
factual Dependence. Philosophy of Science 68(3): 313-24.

Enderton, Herbert B. (2001). A Mathematical Introduction to Logic. San Diego:
Harcourt Academic Press.

Faye, Jan (2021). Backward Causation. In The Stanford Encyclopedia of Phi-
losophy, edited by Edward N. Zalta, Metaphysics Research Lab, Stanford
University, Spring 2021 edition.

Fine, Kit (1975). Critical Notice of Lewis, Counterfactuals. Mind 84(335):
451-8.

—— (2012). Guide to Ground. In Metaphysical Grounding, edited by F. Cor-
reia and B. Schnieder, pp. 37-80, Cambridge: Cambridge University
Press.

Fischer, Enno (2024). Three Concepts of Actual Causation. British Journal for
the Philosophy of Science 75(1): 77-98.

Flach, Peter A. (2000). On the Logic of Hypothesis Generation. In Abduction
and Induction, edited by Peter A. Flach and Antonis C. Kakas, pp. 89-106,
Dordrecht: Kluwer.

Friederich, Simon and Peter W. Evans (2019). Retrocausality in Quan-
tum Mechanics. In The Stanford Encyclopedia of Philosophy, edited by Ed-
ward N. Zalta, Metaphysics Research Lab, Stanford University, summer
2019 edition.



BIBLIOGRAPHY 353

Friedman, Michael (1974). Explanation and Scientific Understanding. The
Journal of Philosophy 71: 1-19.

Frisch, Mathias (2005). Inconsistency, Asymmetry and Non Locality: A Philo-
sophical Investigation of Classical Electrodynamics. Oxford: Oxford Univer-
sity Press.

—— (2014). Causal Reasoning in Physics. Cambridge: Cambridge University
Press.

Galindo, Alberto and Pedro Pascual (1990). Quantum Mechanics 1. Berlin:
Springer.

Gallow, Dmitri J. (2021). A Model-Invariant Theory of Causation. The Philo-
sophical Review 130(1): 45-96.

Gebharter, Alexander, Dennis Graemer, and Frenzis H. Scheffels (2019). Es-
tablishing Backward Causation on Empirical Grounds: An Intervention-
ist Approach. Thought: A Journal of Philosophy 8(2): 129-38.

Grove, Adam (1988). Two modellings for theory change. Journal of Philo-
sophical Logic 17: 157-70.

Gaérdenfors, Peter (1978). Conditionals and Changes of Belief. In The Logic
and Epistemology of Scientific Change, Acta Philosophica Fennica, volume 30,
edited by I. Niiniluoto and R. Tuomela, pp. 381-404.

—— (1986). Belief Revisions and the Ramsey Test for Conditionals. The
Philosophical Review 95(1): 81-93.

—— (1988). Knowledge in Flux. Cambridge, MA: MIT Press.

Glinther, Mario (2022). A Connexive Conditional. Logos and Episteme 13(1):
55-63.

Glinther, Mario and Caterina Sisti (2022). Ramsey’s Conditionals. Synthese
200(2): 1-31.

Hall, Ned (2000). Causation and the Price of Transitivity. The Journal of Phi-
losophy 97(4): 198.

—— (2004). Two Concepts of Causation. In Causation and Counterfactuals,
edited by J. Collins, N. Hall, and L. A. Paul, pp. 225-76, Cambridge, MA..:
MIT Press.



BIBLIOGRAPHY 354

—— (2007). Structural Equations and Causation. Philosophical Studies
132(1): 109-36.

Halpern, Joseph Y. (2000). Axiomatizing Causal Reasoning. Journal of Arti-
ficial Intelligence Research 12(1): 317-37.

—— (2008). Defaults and Normality in Causal Structures. In Proceedings of
the Eleventh International Conference on Principles of Knowledge Representa-
tion and Reasoning, edited by G. Brewka and J. Lang, pp. 198-208, Menlo
Park, CA: AAAI Press.

—— (2013). From Causal Models to Counterfactual Structures. Review of
Symbolic Logic 6(2): 305-22.

—— (2015). A Modification of the Halpern-Pearl Definition of Causality.
Proc. 24th International Joint Conference on Artificial Intelligence (IJCAI 2015)
pp- 3022-33.

—— (2016). Actual Causality. Cambridge, MA: MIT Press.

Halpern, Joseph Y. and Christopher Hitchcock (2010). Actual Causation
and the Art of Modeling. In Heuristics, Probability, and Causality: a Trib-
ute to Judea Pearl, edited by R. Dechter, H. Geffner, and J. Y. Halpern, pp.
383-406, London: College Publications.

—— (2015). Graded Causation and Defaults. British Journal for the Philoso-
phy of Science 66(2): 413-57.

Halpern, Joseph Y. and Judea Pearl (2005). Causes and Explanations: A
Structural-Model Approach. Part I: Causes. British Journal for the Philoso-
phy of Science 56(4): 843-87.

Hansson, Sven Ove (1992). In Defense of the Ramsey Test. The Journal of
Philosophy 89(10): 522-40.

—— (1993). Reversing the Levi identity. Journal of Philosophical Logic 22(6).

—— (1999). A Textbook of Belief Dynamics. Theory Change and Database Updat-
ing. Dordrecht: Kluwer.

Hausman, Daniel M. (1998). Causal Asymmetries. Cambridge: Cambridge
University Press.



BIBLIOGRAPHY 355

—— (2002). Physical Causation. Studies in History and Philosophy of Science
Part B: Studies in History and Philosophy of Modern Physics 33(4): 717-24.

Hempel, Carl G. (1962). Two Models of Scientific Explanation. In Frontiers
of Science and Philosophy, edited by R. Colodny, pp. 7-34, Pittsburgh: Uni-
versity of Pittsburgh Press.

—— (1965). Aspects of Scientific Explanation. New York: The Free Press.

Hiddleston, Eric (2005). Causal Powers. The British Journal for the Philosophy
of Science 56(1): 27-59.

Hitchcock, Christopher (2001). The Intransitivity of Causation Revealed in
Equations and Graphs. The Journal of Philosophy 98(6): 273-99.

——(2007). Prevention, Preemption, and the Principle of Sufficient Reason.
Philosophical Review 116(4): 495-532.

—— (2009). Structural Equations and Causation: Six Counterexamples.
Philosophical Studies 144(3): 391-401.

—— (forthcoming). Actual Causation and Factual Difference-Making. Aus-
tralasian Philosophical Review .

Huber, Franz (2013). Structural Equations and Beyond. Review of Symbolic
Logic 6(4): 709-32.

Huemer, Michael and Ben Kovitz (2003). Causation as Simultaneous and
Continuous. Philosophical Quarterly 53(213): 556—65.

Hume, David (1739/2001). A Treatise of Human Nature. Oxford: Oxford Uni-
versity Press. Edited by D. Norton and M. Norton.

Husserl, Edmund (1913/1989). Ideas Pertaining to a Pure Phenomenology
and to a Phenomenological Philosophy. Dordrecht: Kluwer. Translation of
Husserl’s Ideen zu einer reinen Phinomenologie und phinomenologischen
Philosophie by R. Rojcewicz and A. Schuwer.

Kant, Immanuel (1781/1998). Critique of Pure Reason. Cambridge: Cam-
bridge University Press. Translation of Kant’s Kritik der reinen Vernunft by
Paul Guyer and Allen W. Wood.



BIBLIOGRAPHY 356

Kim, Jaegwon (1969). Events and Their Descriptions: Some Considerations.
In Essays in Honor of Carl G. Hempel, edited by Nicholas Rescher, pp. 198
215, Dordrecht: D. Reidel Publishing Company.

Kitcher, Philip (1989). Explanatory Unification and the Causal Structure of
the World. In Scientific Explanation, edited by Philip Kitcher and Wesley
Salmon, pp. 410-505, Minneapolis: University of Minnesota Press.

Kutach, Douglas (2013). Causation and Its Basis in Fundamental Physics. Ox-
ford: Oxford University Press.

Leibniz, Gottfried W. (1686/1998). Principles of Nature and Grace. In Philo-
sophical Texts, pp. 258-66, Oxford: Oxford University Press. Translation
of Leibniz’s Principes de la nature et de la Grice fondés en raison by R. S.
Woolhouse and R. Francks.

Leitgeb, Hannes (2010). Ramsey Test Without Triviality. Notre Dame Journal
of Formal Logic 51(1): 21-54.

Lewis, David (1973a). Causation. The Journal of Philosophy 70(17): 556—67.
—— (1973b). Counterfactuals. Oxford: Blackwell.

—— (1979). Counterfactual Dependence and Time’s Arrow. Noils 13(4):
455-76.

—— (1986a). Events. In Philosophical Papers, Volume II, pp. 241-69, Oxford:
Oxford University Press.

—— (1986b). Postscripts to “Causation”. In Philosophical Papers. Volume II,
pp. 172-213, Oxford: Oxford University Press.

—— (2000). Causation as Influence. The Journal of Philosophy 97(4): 182-97.

Loewer, Barry (2007). Counterfactuals and the Second Law. In Causation,
Physics, and the Constitution of Reality: Russell’s Republic Revisited, edited
by H. Price and R. Corry, pp. 293-326, Oxford: Oxford University Press.

Lutgens, Frederick K., Edward J. Tarbuck, and Dennis Tasa (2013). The At-
mosphere: an Introduction to Meteorology. Boston: Pearson, 12th edition.

Mackie, J. L. (1965). Causes and Conditions. American Philosophical Quar-
terly 2(4): 245-64.



BIBLIOGRAPHY 357

—— (1980). The Cement of the Universe: A Study of Causation. Oxford: Oxford
University Press.

May, Michael and Gerd GrafSshoff (2001). Causal Regularities. In Current
Issues in Causation, edited by W. Spohn, M. Ledwig, and M. Esfeld, pp.
85-114, Paderborn: Mentis.

McDermott, Michael (1995). Redundant Causation. The British Journal for
the Philosophy of Science 46(4): 523—44.

McDonald, Jennifer (2020). Strong Proportionality and Causal Claims. In
PhilSci-Archive, URL https://philsci-archive.pitt.edu/16809/.

McGrath, Sarah (2005). Causation By Omission: A Dilemma. Philosophical
Studies 123(1-2): 125-48.

Meheus, Joke, Christian Strafier, and Peter Verdée (2013). Which Style of
Reasoning to Choose in the Face of Conflicting Information? Journal of
Logic and Computation 26(1): 361-80.

Menzies, Peter and Huw Price (1993). Causation as a Secondary Quality.
British Journal for the Philosophy of Science 44(2): 187-203.

Mill, John Stuart (1843/2011). A System of Logic, Ratiocinative and Inductive:
Being a Connected View of the Principles of Evidence, and the Methods of Sci-
entific Investigation. Longmans, Green, Reader, and Dyer.

Noordhof, Paul (2020). A Variety of Causes. New York, NY: Oxford Univer-
sity Press.

Papineau, David (1992). Can We Reduce Causal Direction to Probabilities?
PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Associa-
tion 1992: 238-52.

Paul, L. A. and Ned Hall (2013). Causation: A User’s Guide. Oxford: Oxford
University Press.

Paul, Laurie A. (2000). Aspect Causation. Journal of Philosophy 97(4): 235-56.

Pearl, Judea (2000). Causality: Models, Reasoning and Inference. New York:
Cambridge University Press, 1st edition.


https://philsci-archive.pitt.edu/16809/

BIBLIOGRAPHY 358

—— (2009). Causality: Models, Reasoning and Inference. New York: Cam-
bridge University Press, 2nd edition.

Peirce, Charles Sanders (1931). Collected Papers of Charles Sanders Peirce.
Cambridge, MA: Harvard University Press. Edited by C. Hartshorne and
P. Weiss and A. Burks.

Poincaré, Henri (1902/1952). Science and Hypothesis. New York: Dover Pub-
lications, 2nd edition. Translation of Poincaré’s La Science et I’Hypothése
by G. B. Halsted.

Price, Huw (1992). Agency and Causal Asymmetry. Mind 101(403): 501-20.

——(1996). Time’s Arrow and Archimedes’ Point: New Directions for the Physics
of Time. Oxford: Oxford University Press.

—— (2017). Causation, Intervention and Agency—Woodward on Menzies
and Price. In Making a Difference, edited by Helen Beebee, Christopher
Hitchcock, and Huw Price, pp. 73-98, Oxford: Oxford University Press.

—— (forthcoming). The Practical Arrow. Australasian Philosophical Review .

Putnam, Hilary (1980). Models and Reality. Journal of Symbolic Logic 45(3):
464-82.

—— (1981). Reason, Truth, and History. Cambridge: Cambridge University
Press.

— (1992). Realism with a Human Face. Cambridge, MA: Harvard Univer-
sity Press.

Quine, Willard V. O. (1961). Two Dogmas of Empiricism. In From a Logical
Point of View, pp. 20-46, Cambridge, MA: Harvard University Press, 2nd
edition.

Rakov, Vladimir A. and Martin A. Uman (2003). Lightning: Physics and Ef-
fects. Cambridge: Cambridge University Press.

Ramsey, Frank Plumpton (1931a). General Propositions and Causality. In
The Foundations of Mathematics and Other Logical Essays, edited by R. B.
Braithwaite, pp. 237-55, London & New York: Routledge.



BIBLIOGRAPHY 359

—— (1931b). Theories. In The Foundations of Mathematics and Other Logical
Essays, edited by R. B. Braithwaite, pp. 212-36, London & New York:
Routledge.

Reichenbach, Hans (1956). The Direction of Time. Los Angeles: University of
California Press.

Richards, Thomas J. (1965). Hume’s Two Definitions of ‘Cause’. Philosophi-
cal Quarterly 15(60): 247-53.

Robinson, J. A. (1962). Hume’s Two Definitions of "Cause”. Philosophical
Quarterly 12(47): 162-71.

Rott, Hans (1986). Ifs, Though, and Because. Erkenntnis 25(3): 345-70.

—— (2011). Reapproaching Ramsey: Conditionals and Iterated Belief
Change in the Spirit of AGM. Journal of Philosophical Logic 40: 155-91.

Russell, Bertrand (1913). On the Notion of Cause. Proceedings of the Aris-
totelian Society 13: 1-26.

—— (1918/2010). The Philosophy of Logical Atomism. Routledge Classics,
London: Routledge.

—— (1921/2009). Psychological and Physical Causal Laws. In The Basic
Writings of Bertrand Russell, edited by R. E. Egner and L. E. Denonn, pp.
287-95, Routledge Classics, London & New York: Routledge.

Sartorio, Carolina (2005). Causes as Difference-Makers. Philosophical Studies
123(1): 71-96.

Schaffer, Jonathan (2000). Trumping Preemption. Journal of Philosophy 97(4):
165-81.

Schnieder, Benjamin (2014). Bolzano on Causation and Grounding. Journal
of the History of Philosophy 52(2): 309-37.

Schurz, Gerhard (2008). Patterns of Abduction. Synthese 164: 201-34.

Schurz, Gerhard and Alexander Gebharter (2016). Causality as a Theoreti-
cal Concept: Explanatory Warrant and Empirical Content of the Theory
of Causal Nets. Synthese 193(4): 1073-103.



BIBLIOGRAPHY 360

Sneed, Joseph D. (1979). The Logical Structure of Mathematical Physics. Dor-
drecht: D. Reidel Publishing Company, 2nd edition.

Spirtes, Peter, Clark Glymour, and Richard N. Scheines (1993). Causation,
Prediction, and Search. Cambridge, MA: MIT Press.

Spohn, Wolfgang (1988). Ordinal Conditional Functions: A Dynamic The-
ory of Epistemic States. In Causation in Decision, Belief Change, and Statis-
tics I1, pp. 105-34, Dordrecht: Kluwer.

—— (2006). Causation: An Alternative. British Journal for the Philosophy of
Science 57(1): 93-119.

—— (2012). The Laws of Belief: Ranking Theory and its Philosophical Applica-
tions. Oxford: Oxford University Press.

Stalnaker, Robert C. (1968). A Theory of Conditionals. In Studies in Logi-
cal Theory (American Philosophical Quarterly Monograph Series), edited by
N. Rescher, pp. 98-112, 2, Oxford: Blackwell.

Suppes, Patrick (1957). Introduction to Logic. Princeton: Von Nostrand.

Taylor, Richard (1966). Action and Purpose. Englewood Cliffs, NJ: Humani-
ties Press.

van Ditmarsch, Hans, Wiebe van der Hoek, and Barteld Kooi (2008). Dy-
namic Epistemic Logic. Berlin: Springer.

van Fraassen, Bas (1980). The Scientific Image. Oxford: Oxford University
Press.

Weslake, Brad (forthcoming). Commentary on Factual Difference-Making.
Australasian Philosophical Review .

Wilson, Alastair (2018). Metaphysical Causation. Noils 52(4): 723-51.

Wittgenstein, Ludwig (1953). Philosophical Investigations. Oxford: Blackwell.
Translation of Wittgenstein’s Philosophische Untersuchungen by G. E. M.
Anscombe.

Woodward, James (2003). Making Things Happen: A Theory of Causal Expla-
nation. Oxford: Oxford University Press.



BIBLIOGRAPHY 361
Wysocki, Tomasz (forthcoming). No Causation for the Unsettled. Aus-
tralasian Philosophical Review .

Zach, Richard (2021). Sets, Logic, Computation: An Open Introduction to Met-
alogic. OpenLogicProject, URL http://builds.openlogicproject.org.


http://builds.openlogicproject.org

Index of Names

Hume, 4-5, 303-304 Kant, 151-152, 303-304

362



Index of Subjects

abductive inference, 172-179
absence, 15-16

absence rule, 111-114

active path, 41-52

bilking argument, 244-251

causal explanation, 216-219
causal graph, 38—40
causal model, 27-38
causation
backward, 234-287
concept of, 4-7
conjunctive, 55-57
non-transitivity of, 76-90
simultaneous, 214-233
spurious, 164-213
temporal asymmetry of, see
Humean convention
cause, 44-46, 115-116, 160-161,
204-205, 218-219,
296-298
collaboration, 100-102
common cause, 164-195, 251-256
conjunctive fork, 251-253
convention, 148-151
counterfactual, 260-274
backtracking, 260-265

363

counterfactual approach, 21-24,
260-274

default, 111-115
deviancy, 111-116

entanglement, 96-100
epochetic approach, 2—4
epochetic conditional, 2-3, 8-9,

157-159, 327-329
events, 15-20

grounding, 20, 229

Humean convention, 12-15,
145-152, 160-161,
165-166, 216-219,
259-260, 284-287

inferential network, 46-52
inferential path, 40-52
intervention, 34-35, 235-246
INUS condition, 210-211,
277-278
isomorphism, 92-93, 108-110

law, 154-157
ceteris paribus, 156
default, 111-115, 156-157



INDEX OF SUBJECTS

non-redundant, 171-172,
179-180, 196203
redundant, 171-172, 179-180,
196-203
law of nature, 169-170, 207
best system account of, 207

neuron diagram, 53-55
normality, 111-116

omission, 128-131
overdetermination, 58-59,
136-140

preemption, 46-52, 63-65,
136-140
early, 59-63
late, 65-67
trumping, 68-71
prevention, 71-73
bogus, 117-118
bogus double, 120
double, 73-75

364

extended bogus, 118-120

extended double, 79-82

isomorphic modified
extended double,
126-128

modified extended double,
124-125

Ramsey Test, 8-9, 157-159,
327-329
reason, 2-3, 8-9, 159-160

Sartorio’s principle, 90-93
short circuit, 77-79
extended, 123-124
structural equation, 28-31
subcause, 94-96
switch
basic, 8688
realistic, 88-90, 131-134
simple, 83-86

unification, 169-170, 199-207



	Preface
	Introduction
	The Epochetic Approach
	The Concept of Causation
	Reasons
	Causes in Causal Models
	The Reductive Analysis
	Events
	Advantages over the Counterfactual Approach

	I Causes in Causal Models
	Active Paths
	Causal Models
	Causal Graphs
	Inferential Pathways
	The Inferential Analysis
	Inferential Networks

	Classics
	Neuron Diagrams
	Conjunctive Causes
	Overdetermination
	Early Preemption
	Direct Deductions and Genuine Causation
	Late Preemption
	Trumping Preemption
	Prevention
	Double Prevention

	Non-Transitivity
	Short Circuit
	Extended Double Prevention
	Simple Switch
	Basic Switch
	Realistic Switch
	Sartorio's Principle

	Entanglement
	Subcause
	What is Entanglement?
	Collaboration
	Failed Collaboration
	Disjunctive Cause Follows Conjunctive Cause
	Conjunctive Cause Follows Disjunctive Cause
	Disjunctive Cause Opposes Conjunctive Cause
	Conjunctive Cause Opposes Disjunctive Cause

	Deviancy
	The Problem of Isomorphic Causal Models
	Deviancy and Normality
	Deviancy of Causes
	Bogus Prevention
	Extended Bogus Prevention
	Bogus Double Prevention
	Extended Short Circuit
	Modified Extended Double Prevention
	Isomorphic Modified Extended Double Prevention
	Omissions
	Realistic Switches
	Looking Back: Preservation of Causal Verdicts
	Revisiting Overdetermination and Preemption


	II The Reductive Analysis
	A Humean Analysis
	The Humean Convention
	Poincarean Conventions
	Belief Revision Theory
	Epochetic Conditionals
	Causation

	Spurious Causation
	Common Causes
	Non-Redundant Laws
	Abductive Inferences
	Abductively Redundant Laws
	Common Causes in Conjunctive Scenarios
	Independence of Causes
	Common Causes in Disjunctive Scenarios
	Conjunctive and Disjunctive Scenarios Combined
	Lightning
	Trivial Spurious Causes
	An Ordering of Unification
	Unification and Causation
	Other Solutions

	Simultaneous Causation
	Some Examples
	Causal Explanatory Asymmetries
	Causal Scenarios
	The Length of the Pendulum

	Backward Causation
	From an Interventionist Perspective
	The Interventionist Account with Causal Graphs
	The Direction of Interventions
	The Bilking Argument
	Ways out of the Bilking Argument
	The Original Fork Theory
	The Counterfactual Approach
	Problems of the Counterfactual Approach
	The Independence Theory
	The Disjunctive Fork Theory
	Conclusion

	Conclusion and Synthesis
	Causes in Causal Models
	The Reductive Analysis
	Synthesis
	The Final Analysis
	Causation in the Objects

	Appendices
	The Logic of Causal Models
	Motivation
	Propositional Causal Models
	Natural Deduction
	Semantics
	Soundness and Completeness
	Non-Binary Variables

	Belief Revision Theory
	Revision of a Ranked Belief Base
	Epochetic Conditionals

	Proofs
	Chapter 2
	Chapter 3
	Chapter 5

	Bibliography
	Index of Names
	Index of Subjects


