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Abstract

In this paper, we refine Lewis’s regularity theory of causation by
causal models. We show that the resulting theory overcomes the
problems that speak decisively against his regularity theory. Fur-
ther refinements address issues with the transitivity of causation and
isomorphic causal scenarios. We conclude that the final theory can
compete with the most advanced regularity and counterfactual ac-
counts of causation.
Keywords. Causation, Regularity Theory, Counterfactual Accounts,
Causal Models.

1 Introduction

Causation is instantiation of regularities. This is the core idea behind
the regularity theory of causation. Lewis (1973) authored a regularity
theory just for the purpose of criticising and rejecting it. On this theory, a
cause is an indispensable member of any minimal set of actual conditions
which jointly entail the effect in the presence of the laws. If so, we say
for brevity that the effect is inferable from the cause. The theory cannot
distinguish genuine causes from effects and preempted would-be causes.
These problems speak decisively against it.

*Mario.Guenther@lmu.de. The authors contributed equally.
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In this paper, we refine Lewis’s regularity theory by embedding it into a
framework of causal models. The idea behind our theory is this: causation
is forward-directed inferability along lawful paths. The forward-directedness
overcomes the problems that speak decisively against Lewis’s regularity
theory. Our idea of lawful paths addresses causal scenarios which suggest
that causation is not transitive. It says, roughly, that an effect must be
inferable from a genuine cause in the presence of all and only the lawful
paths between them. Moreover, we offer an optional condition of deviancy
to address the problem of isomorphic causal models: there are pairs of
scenarios which are structurally indistinguishable for simple causal model
accounts, and yet our causal judgments differ (Hall, 2007). We conclude
that our regularity theory can compete with the most advanced regularity
and counterfactual accounts of causation.

We proceed as follows. First, we introduce the regularity theory authored
by Lewis and the problems it faces. Second, we embed this theory of
deterministic token causation into a simple framework of causal models,
add the requirement of forward-directedness, and show how the resulting
theory overcomes the problems. Third, we further refine the theory by our
idea of lawful paths and offer an optional condition of deviancy. Finally,
we compare our theory to both other regularity theories and counterfactual
accounts.

2 Lewis’s Regularity Theory

Hume (1748/1975, Sect. VII) said that causation is the instantiation of reg-
ularity. This core idea of the regularity theory has already been refined be-
fore Lewis had any chance to criticise it. We learned from Mill (1843/2011)
and others that causation requires the instantiation of a specific kind of
regularity: laws of nature. Mere accidental regularities do not establish
genuine causal relations. Since authors like Hart and Honoré (1959/1985)
and Mackie (1965) we allow one indispensable condition to be a cause as
long as the totality of conditions is invariably followed by the effect ac-
cording to at least one law. The regularity theory thus counts as a cause
each indispensable member of any minimal set of actual conditions which
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are jointly sufficient for the effect to occur in the presence of the laws.

Lewis (1973, p. 556) made the regularity theory more precise. He under-
stands sufficiency as entailment: a set of conditions is sufficient for an
effect to occur just in case the set entails the effect in the sense of classical
logic. On his regularity theory, an event c is thus a cause of another event e
if and only if (iff) c belongs to a minimal set of actual conditions that entail
the occurrence of e in the presence of the laws. If so, we say e is inferable
from c for short.

Here is Lewis’s statement of the regularity theory. Let A be the proposition
that is true if and only if (iff) the token event a occurs. Furthermore, let
L denote a set of law-like propositions entailed by the true laws and F a
possibly empty set of true propositions of particular fact.

c is a cause of e iff there is a set F of true propositions of
particular fact and a set L of true law-like propositions such
that all of the following conditions are satisfied:
(1) C and E are true.

(2) L∪F |= C→ E.

(3) L∪F ̸|= E.

(4) F ̸|= C→ E.

Let us explain this regularity theory. (1) says that cause and effect are
actual. (2) says that a cause entails its effect in the presence of L ∪ F .
However, (3) says that L ∪ F alone does not entail E. Given L ∪ F , C
is indispensable for E. In this sense, L ∪ F ∪ {C} is a minimal set which
entails E. (4) says that F alone does not entail the material implication
C → E. This is Lewis’s way to implement that the set L of true law-like
propositions is not redundant for the entailment of E.

The set F contains only propositions of particular fact. The negation ¬A
of an actual event a, for example, cannot be in it. It follows from (1)-(4) that
the possibly empty set F alone neither entails C nor E. If it alone were to
entail E, (4) would be violated. If it alone were to entail C, either (2) or (3)
would be violated. Finally, note that the usage of the material implication
is not essential. By the deduction theorem of classical logic, clauses (2) and
(4) can be equivalently rephrased as follows:
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(2’) L∪F ∪ {C} |= E, and

(4’) F ∪ {C} ̸|= E.

The presented regularity theory faces a problem: it recognizes more causes
than there are. It wrongly counts as causes (a) effects of unique causes, (b)
joint effects of common causes, and (c) preempted would-be causes.

c e

Figure 1

(a) The problem of unique causes. If c is inferable from e, e may nevertheless
be an effect of c rather than a cause. Consider the scenario depicted in
Figure 1, where c causes e, but e does not cause c, and there are no other
causes for e. In this scenario, the law-like propositions L entail the bi-
implication C ↔ E. And so L and the empty F entail the implication
E → C going against the direction of causation. The empty F neither
entails C nor E. Hence, the clauses (1)-(4) are satisfied.

c

a

e

Figure 2

(b) The problem of joint effects. If e is inferable from a, a and e may be
joint effects of a common cause c. Consider the scenario depicted in Figure
2, where c causes a and e, but a does not cause e and e does not cause
a. Furthermore, a could not have been caused otherwise than by c and c
could not have failed to cause e. In this scenario, the law-like propositions
L entail C ↔ A and C → E. And so L and the empty F entail A → C
against the direction of causation, and C→ E in the direction of causation.
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By the transitivity of the material implication, we obtain A → E. Hence,
the clauses (1)-(4) are satisfied and a counts as a cause of e.

c

a

d

b

e

Figure 3

(c) The problem of preemption. If e is inferable from a, a may be a mere
would-be cause of e. Consider the scenario depicted in Figure 3, where a
did not cause e but would have had the genuine cause c been absent. In
this scenario, the law-like propositions entail A → E. There is some F ,
which does not contain anything that implies A, E and/or C, such that the
clauses (1)-(4) are satisfied. Hence, the mere would-be cause a counts as a
cause of e although the genuine cause c preempted the causal efficacy of a.

What went wrong? We propose that an effect must be inferable from a
genuine cause in a causally forward-directed way. As we have seen in the
problem of unique causes and the problem of joint effects, entailments
against the direction of causation lead to the recognition of causal relations
where there are none. Mere inferability of some event from a putative
cause is not enough.

Moreover, one element of regularity theories is the respect for true par-
ticular facts. But the entailment of A → E in the problem of preemption
involves an inference via B, even though b does not occur. This suggests
that the regularity theory of Lewis is too liberal as to the choice of the set
F of true propositions of particular fact. There is a minimality constraint
on F , but a maximality constraint is lacking which would guarantee that
¬B ∈ F .

Such a maximality constraint alone, however, does not help Lewis’s regu-
larity theory. Even if F = {¬B}, a counts as a cause of e in the preemption
scenario. For this to be seen, observe first that the law-like propositions
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in L and ¬B entail ¬A ∨ C. There are only two cases: if ¬C, then L and
F entail ¬A, and thus A → E. If C, then L and F entail E, and thus
A→ E. Condition (2) is again satisfied. But observe that this reasoning is
artificial. Intuitively, a is not a cause of e because A does not entail E in a
forward-directed way via B.

In the next section, we embed the regularity theory authored by Lewis into
a framework of causal models. This allows us to add both: a maximality
constraint on the minimal set of actual conditions which jointly entail the
effect, and a requirement of forward-directedness on the inferability of the
effect.

3 Refining Lewis’s Regularity Theory

We refine Lewis’s regularity theory by embedding it into a framework of
causal models. For this purpose, we introduce first a simple framework of
causal models and define an entailment relation in causal models. We then
analyse causation in the spirit of Lewis’s regularity theory while taking the
lessons from the last section into account: causation requires a condition
of forward-directedness and a maximality constraint. Finally, we revisit
the three troublesome causal scenarios.

3.1 A Framework of Causal Models

Causal models represent causal scenarios. In a causal scenario like pre-
emption, certain events occur, others do not, and we have a certain law-like
structure that tells us how event types depend on other event types. We
define a causal model ⟨L,F ⟩ by two components: a set L of law-like
propositions and a set F of true propositions of particular fact. A ∈ F
means that some token event a of type A occurs. ¬A ∈ F means that no
token event of type A occurs. In other words, ¬A denotes the absence of
any event of type A, or simply the absence of A.

A law-like proposition has the form

A = ϕ,
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where A is a propositional variable, ϕ a propositional formula in disjunc-
tive normal form, and no variable appears vacuously. So each logical
symbol of ϕ is either a negation, a disjunction, or a conjunction. ϕ can
be seen as a truth function whose arguments represent occurrences and
non-occurrences of events. The truth value of ϕ determines whether A
or ¬A. A law-like proposition expresses the true regularity that A iff ϕ.
We say a propositional variable appears in A = ϕ vacuously iff the vari-
able never affects the truth values of A and ϕ. In the law-like proposition
A = C∨ (D∧¬D), for example, the variable D appears vacuously.

In our framework, law-like propositions are directed bi-implications. They
have a variable A standing for a type effect on the left-hand side and a
Boolean combination of variables standing for type causes on the right-
hand side. We take the direction of law-like propositions as given. As a
consequence, our theory is not reductive. We discuss the prospects of a
reductive regularity theory in Section 6.1.

Assuming the direction of law-like propositions, the preemption scenario
can be represented by a causal model ⟨L,F ⟩, where L = {D = C, B =
A∧¬C, E = D∨ B} and F = {C, A, D,¬B, E}. For readability, we represent
causal models in two-layered boxes. The upper layer shows the set L of
law-like propositions. The lower layer shows the set F of propositions of
particular fact. For the preemption scenario, we obtain:

D = C
B = A∧¬C
E = D∨ B
C, A, D,¬B, E

Let us define a causal model semantics in terms of the semantics of propo-
sitional logic. We say a classical valuation satisfies a law-like proposition
A = ϕ iff both sides have the same truth value on this valuation. This
allows us to define the satisfaction relation in the standard way. Where Γ
is a set of propositional formulas and law-like propositions, Γ |= ψ iff the
propositional formula or law-like propositionψ is satisfied by any classical
valuation that satisfies all members of Γ. We define the entailment relation
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in causal models as follows:

⟨L,F ⟩ |= ψ iff L∪F |= ψ.

Finally, we say that a set Γ of propositional formulas and law-like propo-
sitions satisfies another such set ∆ iff Γ |= ψ for any ψ in ∆.

A central idea of our theory is that an effect is inferable from its cause
in a forward-directed way. A law-like proposition A = ϕ has the truth
conditions of the bi-implication A ↔ ϕ and so is symmetric: it allows for
forward-directed inferences fromϕ to A and backward-directed inferences
from A to ϕ. We introduce the notion of a setting to isolate the forward-
directed causal consequences of some event a of type A for a causal model
⟨L,F ⟩. Roughly speaking, a setting removes a law-like proposition A = ϕ
from L and replaces it by a true proposition, either A or ¬A. Thereby
backward-directed inferences from A or ¬A are excluded.

Settings establish an asymmetry based on the direction of law-like propo-
sitions. Consider, for example, a causal model which includes the law-like
proposition E = C. Setting C determines E in a forward-directed way.
However, setting E does not determine C, it removes the law-like proposi-
tion and replaces it by E. The considered law-like proposition has the same
truth conditions as C = E. But had the latter instead of the former been in
the causal model, setting C would have removed this law-like proposition
and setting E would have determined C in a forward-directed way. The
difference between E = C and C = E matters for what is and isn’t infer-
able in a forward-directed way. In general, the direction of the law-like
propositions matters for the direction of causation.

Suppose we want to determine the forward-directed causal consequences
of the occurring token event a of type A for a causal model ⟨L,F ′⟩. The
setting of A in this causal model results in a causal model ⟨LA,F ′ ∪ {A}⟩.
If A = ϕ is a member of L, LA is obtained from L by removing this
law-like proposition. Otherwise LA = L. We call ⟨LA,F ′ ∪ {A}⟩ the
causal submodel of ⟨L,F ′⟩ after the setting of A. By removing the law-like
proposition of A from L, backward-directed inferences from A or ¬A are
excluded in the causal submodel. The asymmetry of causation may so be
established by a setting and the direction of the law-like propositions.
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In general, we denote possibly complex settings by an operator [·] that
takes a causal model ⟨L,F ′⟩ and a set S, where both F ′ and S are subsets
of the true propositions F of particular fact, and returns a causal model:
the submodel of ⟨L,F ′⟩ after the setting of S. The setting by a set of true
propositions of particular fact is defined as follows:

⟨L,F ′⟩[S] = ⟨LS,F ′ ∪S⟩

where

LS = {(A = ϕ) ∈ L | A < S and ¬A < S}.

LS is the subset ofL that contains each law-like proposition A = ϕwhose
variable A does not appear in S. After setting S in the causal model
⟨L,F ′⟩, the set S becomes part of the propositions of particular fact of the
resulting submodel. Note that the resulting submodel is again a causal
model consisting of a set of law-like propositions and a set of propositions
of particular fact.

Settings will always only set true propositions of particular fact. No propo-
sitions contrary to the true facts are ever set, unlike the interventions em-
ployed by Halpern and Pearl (2005) for example. As a consequence, the
submodels resulting from settings are not inconsistent provided the origi-
nal causal models were not.

Our directed law-like propositions resemble symmetric structural equa-
tions. For some authors, the structural equations themselves are asym-
metric and thereby exclude inferences against the direction of causation
(Hitchcock, 2001). For others the asymmetry comes in only through the
interventions defined for structural equations (Pearl, 2009). For us the
asymmetry comes in only through the settings defined for directed law-
like propositions.

3.2 A Refined Regularity Theory

We are now in a position to refine the regularity theory of causation.
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Definition 1. Let ⟨L,F ⟩ be a causal model such that F satisfies L. c is a
cause of e relative to ⟨L,F ⟩ iff there is a possibly empty set F ′ ⊆ F such
that all of the following conditions are satisfied:

(i) ⟨L,F ⟩ |= C∧ E.

(ii) ⟨L, ∅⟩[F ′][{C}] |= E.

(iii) ⟨L,F ′⟩ ̸|= E and there is no F ′′ so that F ′ ⊂ F ′′ ⊆ F and ⟨L,F ′′⟩ ̸|=
E.

(i) says that cause and effect are actual. (ii) says that, in the presence of
the law-like propositions L, a cause together with some propositions F ′

of particular fact entails its effect in a forward-directed way. However, (iii)
says that the propositionsF ′ of particular fact and the law-like propositions
L alone do not entail E; and it requires that F ′ is maximal: any strict
superset of F ′ would entail E in the presence of the law-like propositions.

Our preliminary regularity theory resembles the regularity theory au-
thored by Lewis. F ′ is some set of true particulars such that the effect
proposition E is forward-directedly entailed by it together with a genuine
cause proposition C in the presence of the law-like propositions in L; and
yet F ′ and L alone do not entail E. C is indispensable for the forward-
directed entailment.

However, our preliminary regularity theory is stronger than Lewis’s. (ii), as
compared to (2), is strengthened by the requirement of forward-directedness.
(iii), as compared to (3), is strengthened by a maximality condition that
implements a respect for the true particular facts. A genuine cause propo-
sition C is thus an indispensable member of a minimal set of actual condi-
tions that entail E in a forward-directed way, while it contains as many as
possible of the actual facts. The two strengthenings make an equivalent to
Lewis’s condition (4) superfluous.

On our preliminary theory, a cause is each member of any maximised min-
imal set of actual conditions which, in the presence of the law-like propo-
sitions, entail the effect in a forward-directed way. Causation so understood
is lawful inferability in a forward-directed way that respects the particular
facts. It is time to revisit the troublesome causal scenarios.
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3.3 Causal Scenarios Revisited

The refined regularity theory gives the correct verdicts for the three trou-
blesome scenarios we have considered so far. Consider the causal model
⟨L,F ⟩ for the problem of unique causes:

E = C
C, E

Here, c is a cause of e. C and E are true in the causal model, and (ii) and
(iii) are satisfied for F ′ = ∅.

By contrast, e is not a cause of c. There is no F ′ that satisfies (ii) and (iii).
(ii) demands that ⟨L, ∅⟩[F ′][{E}] entails C. The setting of E removes the
law-like proposition E = C fromL. (ii) is then only satisfied if F ′ contains
C. But then ⟨L,F ′⟩ |= E which violates (iii). Indeed, c is not inferable from
e in a forward-directed way.

Consider the causal model ⟨L,F ⟩ for the problem of joint effects:

A = C
E = C
C, A, E

Here, c is a cause of e. C and E are true in the causal model, and (ii) and
(iii) are satisfied for F ′ = ∅. Similarly, c is a cause of a.

By contrast, a is not a cause of e. There is no F ′ that satisfies (ii) and (iii).
(ii) demands that ⟨L, ∅⟩[F ′][{A}] entails E. The setting of A removes the
law-like proposition A = C fromL. (ii) is then only satisfied if F ′ contains
C or E. In both cases ⟨L,F ′⟩ |= E, which violates (iii). Indeed, e is not
inferable from a in a forward-directed way. Similarly, e is not a cause of a.

The problems of unique causes and joint effects illustrate how settings
establish the asymmetry of causation based on the direction of law-like
propositions. In the presence of the law-like proposition A = ϕ, a setting
of some proposition in ϕ may determine whether A or ¬A, but a setting
of A does not determine any truth value of any proposition appearing in

11



ϕ. In the presence of settings, any A = ϕ says that ϕ determines whether
A or ¬A in a forward-directed way and not the other way around. We
use this feature of settings to identify the direction of causation. A correct
identification is necessary to solve the problems of unique causes and joint
effects. This means: our theory can solve these problems only if we have
identified the true law-like propositions and their direction.

Consider the causal model ⟨L,F ⟩ for the problem of preemption:

D = C
B = A∧¬C
E = D∨ B
C, A, D,¬B, E

Here, c is a cause of e. C and E are true in the causal model, and (ii) and
(iii) are satisfied for F ′ = {¬B}.

By contrast, a is not a cause of e. There is no F ′ that satisfies (ii) and (iii).
(iii) demands that ⟨L,F ′⟩ ̸|= E and every strict superset of F ′ that is a
non-strict subset of F would entail E. So F ′ must be the set {¬B}. (ii) then
demands that ⟨L, ∅⟩[{¬B}][{A}] entails E. But this is not the case.

We have shown this: once we have the true law-like propositions and their
direction, our preliminary regularity theory overcomes the three problems
that speak decisively against the regularity theory authored by Lewis. We
discuss the extent to which the direction of law-like propositions may be
obtained in sections 6.1.1 and 6.1.2. For now, we address further troubles
beginning with causal scenarios that threaten the transitivity of causation.

4 Transitivity

Our preliminary regularity theory is challenged by causal scenarios which
suggest that causation is not transitive. The transitivity of causation means
this: whenever a token event c is a cause of another a, and a is a cause of
a third event e, then c is a cause e. It seems often plausible to judge c a
cause of e if you judge c a cause of a and a a cause of e. However, several
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scenarios have been put forth which suggest that our causal judgments are
not transitive (McDermott, 1995; Lewis, 2000; Paul, 2000).

4.1 The Boulder Scenario

One of the examples against transitivity may be found in Hitchcock (2001,
p. 276). A boulder is dislodged and rolls toward a hiker. The hiker sees the
boulder coming and ducks, so that she does not get hit by the boulder. If
the hiker had not ducked, however, the boulder would have hit her.

The boulder scenario seems to show that there are cases where causation
is not transitive: the dislodged boulder causes the ducking of the hiker,
which in turn causes the hiker to remain untouched by the boulder. But the
dislodging of the boulder does not cause the hiker to remain unscathed.
Unlike other accounts, our theory does not rely on transitivity to han-
dle certain causal scenarios. We are thus free to deny that causation is
invariably transitive.

The formal representation of informal stories like the boulder example is
somewhat controversial. We think Paul and Hall (2013, pp. 223-6) argue
successfully against the causal model for the boulder scenario employed
and argued for by Hitchcock (2001, pp. 295-8). Following Gallow (2021,
p. 53), we represent the structure of the boulder scenario as follows.

eb

df

Figure 4

Hall (2007, p. 36) calls this structure a short circuit: the boulder’s dislodge-
ment f threatens to hit the hiker by a rolling boulder b, and at the same
time provokes an action—the ducking d—that prevents this threat from
being effective: no token event e of type E occurs.
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The token event f should not count as a cause of the absence of any event of
type E, because f creates and cancels the threat to bring about some token
event of type E (Paul and Hall, 2013, p. 216). Our preliminary regularity
theory says so. However, it does also not count the ducking of the hiker as
a cause of her remaining unscathed: d does not count as a cause of ¬E, or
‘e’s absence’. To see this, consider the causal model of the boulder scenario:

B = F
D = F
E = B∧¬D
F, B, D,¬E

Note that the set L of law-like propositions alone entails ¬E—even if
F
′ = ∅. ¬E is entailed whether F is true or not, and in violation of

condition (iii). The verdict that the ducking of the hiker is not a cause of
the hiker’s remaining untouched is clearly false. And so our preliminary
theory succumbs to a severe problem.

In response, we propose to further refine our theory by an idea of lawful
paths between cause and effect. The basic idea is that an effect must be
inferable from a genuine cause in the presence of all and only the lawful
paths between them. The lawful paths between cause and effect are just
a set of law-like propositions that connect cause and effect in a forward-
directed way. One may roughly think of lawful paths as chains of lawful
propositions running from a candidate cause to its putative effect. The idea
of lawful paths adds this to our regularity theory: when testing whether a
token event c of type C is a cause of a token event e of type E, the lawful
paths from C to E need to remain intact, but only those paths.

We implement the idea of lawful paths between cause and effect in two
steps. First, we allow to remove law-like propositions when testing for
causation. Second, we constrain the removal of law-like propositions by
a condition which ensures that the lawful paths starting from a candidate
cause remain in the law-like propositions.

Our implementation requires some terminology. We say A = ϕ is the law-
like proposition of A. We also say A is a child variable of the parent variables
appearing in ϕ. Let B be one of the parent variables appearing in ϕ. The
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variable A is then a child variable of B, and so a first descendant of B. The
child variables of A are the child variables of one of B’s child variables,
and so are among B’s second descendants. In general, the descendants
of some variable B are the variables in the transitive closure of the child
relation starting from B. Similarly, the ancestors of some variable B are the
variables in the transitive closure of the inverse child relation—the parent
relation—starting from B.

Where B is a propositional variable, let D be a proposition of the form B or
¬B. We say that the descendants of the proposition D are all the variables
(of the causal model under consideration) which are descendants of the
variable B. We are now in a position to state our regularity theory of
causation.

Definition 2. Let ⟨L,F ⟩ be a causal model such that F satisfies L. c is a
cause of e relative to ⟨L,F ⟩ iff there are possibly empty sets F ′ ⊆ F and
L
′
⊆ L such that all of the following conditions are satisfied:

(i) ⟨L,F ⟩ |= C∧ E.

(ii) ⟨L′, ∅⟩[F ′][{C}] |= E.

(iii) ⟨L′,F ′⟩ ̸|= E and there is noF ′′ so thatF ′ ⊂ F ′′ ⊆ F and ⟨L′,F ′′⟩ ̸|=
E.

(iv) For all descendants A of C, the law-like proposition of A is in L′.

The removal of law-like propositions is implemented as follows. We allow
a subset L′ of L to figure in the condition (ii) of forward-directed infer-
ability and condition (iii) of C’s indispensability for the inferability in a
maximal context of actual facts. The removal of law-like propositions is
constrained by condition (iv): the causal paths starting from a candidate
cause C must remain in L′. Causation so understood is forward-directed
inferability along the lawful paths between cause and effect.

Let us reconsider the boulder example. The dislodgement of the boulder
f still does not count as a cause of the hiker’s remaining unscathed ¬E.
To see this, observe that all variables of the causal model are descendants
of F. Condition (iv) thus ensures that all law-like propositions of L must
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remain in L′. As a consequence, there is no L′ and F ′ so that condition
(iii) is satisfied. Even for F ′ = ∅, the law-like propositions entail ¬E.

The hiker’s ducking d, by contrast, counts as a cause of the hiker’s re-
maining unscathed ¬E. To see this, observe that F is not a descendant of
D. Hence, the law-like proposition D = F can be removed from L. Take
L
′ = {B = F, E = B∧¬D} andF ′ = {F, B}. ⟨L′,F ′⟩ does not entail ¬E, and
F
′ is maximal: any strict superset of F ′ would entail ¬E in the presence

of the law-like propositions in L′. But, of course, ⟨L′, ∅⟩[F ′][{D}] |= ¬E.

We have further refined our regularity theory by an idea of lawful paths
between cause and effect. The refined regularity theory says that causation
is not invariably transitive. In the boulder scenario, the dislodged boulder
comes out as a cause of the hiker’s ducking, which in turn comes out as a
cause of the hiker’s remaining unscathed. And yet, the dislodged boulder
does not count as a cause of the hiker’s remaining unscathed. We turn
now to further examples which suggest that causation is not transitive.

4.2 Simple Switch

Switching scenarios are paradigmatic for causal scenarios where our causal
judgments are not transitive. In switching scenarios, some occurring event
of type F helps determine the causal path by which another event is brought
about. Crucially, the other event would also occur via an alternative causal
path if no event of type F had occurred.

To make it more concrete, consider a story provided by Hall (2000, p. 205).
Flipper is standing by a switch in the railroad tracks. A train approaches
in the distance. She flips the switch, so that the train travels down the
right track, instead of the left. Since the tracks reconverge up ahead, the
train arrives at its destination all the same. The commonsense judgment is
that flipping the switch is not a cause of the train’s arrival—even though
flipping the switch is a cause of the train’s travelling on the right track, and
the train’s travelling on the right track is a cause of the train’s arrival (Paul,
2000; Yablo, 2002; Sartorio, 2005, 2006; Schaffer, 2005; Hall, 2007; Hitchcock,
2009; Paul and Hall, 2013; Baumgartner, 2013; Halpern, 2016; Beckers and
Vennekens, 2018; Andreas and Günther, 2021b; Gallow, 2021).
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The structure of this simple switch scenario can be visualized by the fol-
lowing diagram (Beckers and Vennekens, 2018, p. 846).

f

r

l

e

Figure 5

The flipping of the switch f causes the train to travel on the right track r
and prevents the train from travelling on the left track l. And the travelling
on the right track r causes the train to arrive at its destination e. However,
the flipping of the switch f arguably is not a cause of the train’s arrival e.
Here is the causal model for the switch scenario:

L = ¬F
R = F
E = L∨R
F,¬L, R, E

Relative to this causal model, f is not a cause of e. For this to be seen,
observe first that all variables are descendants of F. Condition (iv) thus
prohibits to remove any law-like proposition from L. But then there is
no F ′ so that condition (iii) is satisfied. Even for F ′ = ∅, the law-like
propositions entail E.

By contrast, f is a cause of r. Take L′ = L and F ′ = {E}. Condition (iii) is
then satisfied: ⟨L′,F ′⟩ ̸|= R, and F ′ is maximal—any strict superset of F ′

would entail R in the presence of the law-like propositions L′. The other
conditions are trivially satisfied.
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Likewise, r is a cause of e. TakeL′ = {L = ¬F, E = L∨R} andF ′ = {F,¬L}.
Condition (iii) is then satisfied because ⟨L′,F ′⟩ ̸|= E; and F ′ is maximal—
any strict superset of F ′ would entail E in the presence of the law-like
propositions L′. The other conditions are trivially satisfied.

In sum, our regularity theory delivers the desired verdicts in both the boul-
der and simple switch scenarios. The representation of switch scenarios is
somewhat controversial. The diagram in Figure 5 should not be read as
a neuron diagram, but rather as a causal model. We will discuss further
switch scenarios in Section 6.3. For now, we turn towards the problem of
isomorphic causal models.

5 Isomorphic Causal Models

The problem of isomorphic causal models is that there are pairs of scenarios
which are structurally indistinguishable for simple causal model accounts,
and yet our causal judgments differ (Hall, 2007, p. 44). We call a causal
model account simple if it only factors in structural equations—or our law-
like propositions—together with values of variables—or our propositions
of particular fact.

5.1 Bogus Prevention

Let us illustrate an instance of the problem. Consider a scenario of overde-
termination, where an effect is overdetermined by more than one event.
An example runs as follows: a prisoner is shot e by two soldiers c and
a at the same time, and each of the bullets is fatal without any temporal
precedence. Each of the shots is a cause of the death of the prisoner. The
structure of this scenario, where the effect e is overdetermined by the two
causes c and a, can be represented as follows.
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c

a

e

Figure 6

Here is the causal model of the overdetermination scenario.

E = C∨A
C, A, E

Our regularity theory says c is a cause of e, and so is a. So far so good.
The problem is now that this causal model can be transformed into a
structurally indistinguishable or isomorphic one, for which our causal
judgment differs. The transformation, first, negates both sides of the law-
like proposition. Then it substitutes C by F, A by ¬D, and E by ¬E. The
result is the isomorphic causal model:

E = ¬F∧D
F,¬D,¬E

And indeed, ¬E is ‘overdetermined’ by F and ¬D. The isomorphic causal
model can be visualized as follows.

f

d

e

Figure 7
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Here is a story for this structure. There is an assassin, a potential target,
and her bodyguard. The assassin refrains from poisoning target’s coffee
¬D, and her bodyguard puts antidote in her coffee f . Target survives ¬E,
of course. Since target’s coffee is not poisoned in the first place, there is
no danger at all that she dies. The prevention by bodyguard’s antidote is
bogus. And so bodyguard’s putting the antidote in her coffee is arguably
no cause of her survival (Hiddleston, 2005; Hitchcock, 2007).

Recall that simple causal model accounts cannot detect any difference be-
tween the administration of antidote f in the scenario of bogus prevention
and the shot c of one of the soldiers in the scenario of overdetermination.
However, our causal judgments differ. We judge c to be a cause of e in the
overdetermination scenario, while we do not judge f to be a cause of ¬E
in the bogus prevention scenario.

Simple causal model accounts of causation—for instance the accounts of
Hitchcock (2001) and Halpern and Pearl (2005)—cannot distinguish be-
tween f and c in the isomorphic causal models: c counts as a cause iff f
does. This means simple causal model accounts must incorrectly classify
f as a cause in the bogus prevention scenario if they correctly classify c as
a cause in the overdetermination scenario. This is a problem indeed.

Our theory of causation is a simple causal model account, and so is like-
wise susceptible to the problem of isomorphic causal models. A solution
favored by many authors relies on default or normality considerations
(Hitchcock, 2007; Hall, 2007; Halpern and Hitchcock, 2015; Halpern, 2015).
The underlying idea is that the status of genuine causes depends on be-
ing deviant from what is normal (Beebee, 2004; McGrath, 2005). On this
view, genuine effects are brought about by causes that are more deviant
from normality than its non-actual alternatives. Gallow (2021) goes even
further by elevating the transmission of deviancy to the mark of causation:
an event is a cause in virtue of transmitting its deviancy to its effect.

We can also resolve the problem of isomorphic causal models by a condition
of deviancy. But what is deviancy? For now, we follow Gallow (2021,
p. 54) in saying that prima facie an occurring event is more deviant than
its absence. But this is just a first approximation. The question of what
constitutes deviancy is more intricate, as we will see below.
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We amend now our theory by an optional condition of deviancy. The
condition is motivated by the idea that any cause of an effect must be
deviant. We implement the idea as follows: any candidate cause C′ of an
effect E, which is neither a descendant nor an ancestor of the candidate
cause C under consideration, must be deviant. Note that C is neither a
descendant nor an ancestor of itself. Any one C′ in F \ F ′ is a candidate
cause of E because it entails the effect together with the propositions in F ′

in the presence of the laws L′. Otherwise C′ would remain in F ′ in virtue
of its maximality. To be precise, we offer the option to add the following
condition to conditions (i)-(iv):

(v) for any proposition C′ in F \ F ′ whose variable is neither a descen-
dant nor an ancestor of C, C′ is more deviant than ¬C′.

The deviancy condition (v) says that, for c to be a cause of e, the proposition
C and each proposition C′, which may form withF ′ some maximised min-
imal set for E and whose variable is neither a descendant nor an ancestor
of C, must be more deviant than its respective negation. It follows that the
propositions along the lawful paths from each C′ to E may be non-deviant
so long as any cause C is deviant. On our so-amended regularity theory,
causation is understood as forward-directed inferability along lawful paths from
deviant events and absences.

The above scenario of bogus prevention illustrates the underlying rationale
of the deviancy condition (v). The absence of poison ¬D and the presence
of antidote f in the coffee are no causes because it is normal that coffees
are not poisoned: ¬D is not deviant. The normality of non-occurrence of
any event of type D entails that ‘d’s absence’ and f ’s occurrence are no
causes of target’s survival. The non-deviancy of ¬D robs both itself and
f of its causal status. Our regularity theory amended by our condition of
deviancy solves both overdetermination and bogus prevention.

5.2 Omissions

Omissions pose another problem for many theories of causation. In a
scenario of omission, an event fails to occur and so another event occurs.
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However, had the event occurred, it would have prevented the other event
from occurring. The basic structure of omissions can be represented as
follows.

f

c

e

Figure 8

An event c occurs and brings about an event e. No event f of type F occurs.
However, had an event f of type F occurred, it would have prevented e
from occurring. Here is the causal model for the scenario of omission.

E = ¬F∧C
¬F, C, E

Relative to this causal model, ‘ f ’s absence’ is not a cause of e, given the
above convention about deviancy. For this to be seen, observe that condi-
tions (ii) and (iii) are only satisfied for F ′ = {C}. But then condition (v)
is violated: ¬F is in F \ F ′ and its variable F is neither a descendant nor
an ancestor of itself, and yet ¬F is less deviant than F. (By contrast, c is a
cause of e. Take F ′ = {¬F}. Conditions (ii) and (iii) are then satisfied. And
since ¬F is not in F \ F ′, condition (v) is trivially met.)

Indeed, many omissions are no causes. Putin’s failure to water my plant,
for example, did not cause it to dry up and die. However, some omissions
intuitively do count as causes. My neighbour promised me to water my
plant, but she didn’t and it died. Here my neighbour’s failure to water my
plant should count as a cause of its death (McGrath, 2005). Our theory can
capture this phenomenon if we refine our notion of deviancy.

We have said that prima facie an occurring event is more deviant than its
absence. We say now in addition that the absence¬A of any event of type A
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is more deviant than an event of type A if ¬A violates a norm that is active
in the scenario under consideration (Beebee, 2004; Andreas et al., 2022).
My neighbour’s omission to water my plant is an absence that violates
the active norm of promise-keeping. My neighbour deviated from this
norm and so her omission is more deviant than its negation. Our amended
theory says then that my neighbour’s failure to water my plant is a cause
of the plant’s death. Putin, by contrast, did not promise to water my plant.
His omission is thus less deviant than his watering my plant, and so does
not count as a cause of my plant’s death. Or so says our amended theory.

We have illustrated how the condition (v) of deviancy can help to overcome
the problem of isomorphic causal models and how it can account for simple
scenarios of omission. As to the latter, deviant omissions are genuine
causes, non-deviant ones are not. Our regularity theory amended by the
condition of deviancy says that a genuine cause is deviant and allows
to infer its effect in a forward-directed way along lawful paths. This is
a powerful theory if we allow deviancy to play a role in the concept of
causation.

6 Comparisons

How does our regularity theory compare to other accounts of causation?
In this section, we will locate our theory among other regularity accounts
and briefly compare it to counterfactual accounts. We will argue that our
theory is compatible with the tradition of ‘typical’ regularity theories. We
will explain Baumgartner’s attempt to establish the direction of causation
in Section 6.1.1. We do not endorse his attempt for reasons laid out in
Section 6.1.2.

We then turn to Wright’s (2011) non-reductive regularity account that im-
poses transitivity on causation. As a consequence, his NESS account faces
troubles in scenarios which suggest that causation is not transitive. Several
authors have attempted to formalize Wright’s NESS account using causal
models. We will argue that they either miss their target, or else inherit the
problems of Wright’s original account, or both.

23



Finally, we will contrast our regularity theory to counterfactual accounts
and discuss another switch scenario due to Halpern and Hitchcock (2010).
Our theory can only solve this switch scenario when amended by the
optional condition of deviancy.

6.1 ‘Typical’ Regularity Theories

Lewis (1973, p. 556) calls the regularity theory he authored and rejected
“typical”. And indeed, his proposal reflects the development of the regu-
larity approach to causation until then. The core idea of regularity theories
of causation is that causes are regularly followed by their effects. Hume
(1748/1975) adds to the instantiation of regularity that a cause is spatiotem-
porally contiguous to its effect and precedes its effect in time. At least on
one reading of Hume, there is nothing more to causation, and so causation
is reduced to non-causal entities.

The regularity approach in Hume’s tradition aims to be reductive. It is
characterised by taking a stance against metaphysically thick conceptions
of causation (Dowe, 2000; Psillos, 2002; Andreas and Günther, 2021). The
causal relation does, in particular, not involve a necessary connection, a
productive relation, unobservable causal powers, or the like—not even to
ground the regularities. A regularity is only a stable pattern of events and
absences. Cause and effect simply instantiate such a pattern.

Mill (1843/2011) observes that causation requires laws of nature: the most
general regularities which subsume all the other true regularities. For Mill
(1843/2011, Book I, Ch. V), a cause is a “sum total” of actual conditions
which are jointly sufficient for the effect in the presence of the laws of
nature. An effect may have many sum totals or sets of conditions that are
sufficient for it. Hart and Honoré (1959/1985, p. 112) and Mackie (1965,
p. 246) emphasise that each sum total must be minimally sufficient for its
effect: without any one of its members, a sum total is not sufficient for its
effect. In brief, each member of a sum total is necessary for its sufficiency.
And since Hart and Honoré and Mackie, the regularity theory counts each
necessary condition of any actual or instantiated sum total a cause.

Mackie (1965, 1974) spells out his theory in terms of complex regularities.
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A complex regularity for an effect is a disjunction of conjunctions in dis-
junctive normal form which is necessary and sufficient for said effect. Here
is a toy example of such a complex regularity:

(C1 ∧C2)∨D1 ↔ E. (1)

The sum total C1 ∧C2 is minimally sufficient for the effect E, and so is the
sum total D1. C1 on its own is insufficient to bring about E. But it is part
of the sum total C1 ∧ C2 which is sufficient but unnecessary for E. Taken
together, C1 is an insufficient but non-redundant part of an unnecessary
but sufficient condition for E. In brief, C1 is an INUS condition for E.

On Mackie’s theory, a token event c is a cause of another e iff C is at least
an INUS condition of E and belongs to an instantiated sum total sufficient
for E. “At least” because C may also be a necessary, or a sufficient, or
even a necessary and sufficient condition for E. This theory says, roughly,
that a cause is at least a non-redundant or indispensable member of a
minimal set of actual conditions which are jointly sufficient for the effect to
occur in the presence of the complex regularities. Lewis (1973) represented
this ‘typical’ regularity theory of his time using the entailment relation of
classical logic.

Indeed, like Lewis’s statement of the regularity theory, Mackie’s succumbs
to the problems of unique causes and joint effects. It is controversial
whether Mackie’s theory solves the problem of preemption. Strevens
(2007) argues against Mackie (1974, p. 44-7) that it does. Recall Figure
3. Everyone agrees that c is a cause of e. For c belongs to a set of actual con-
ditions which are jointly sufficient for the effect e to occur, and removing
c from that set makes it insufficient. The controversy is whether the event
a falsely counts as a cause of e. Strevens says no. Even though A belongs
to a minimal sum total A ∧ ¬C sufficient for E, not all conditions of this
sum total are actual: c occurs. And he thinks this generalizes to all cases
of preemption when sufficiency is replaced by causal sufficiency—a notion
which we will discuss below.

The underlying problem for Mackie’s theory is that it does not give us the
direction of causation. The complex regularities are material bi-implications
which seem to blur the asymmetry between cause and effect—at least in
the problems of unique causes and joint effects.

25



6.1.1 Non-Redundant Regularities

Baumgartner (2013) developed Mackie’s theory further. He observes that
complex regularities like (1) show a certain directedness: an instantiation
of a sum total, here C1 ∧C2 or D1, is sufficient for E, while an instantiation
of E is generally not sufficient to determine which sum total is instantiated.
Baumgartner uses this directedness to establish the direction of causation
under his assumption of multiple type causes: each type effect has at least two
type causes.

Here is how Baumgartner aims to establish the direction of causation in
a nutshell. The complex regularities must be constrained: they must be
rigorously minimized. The left-hand side of each complex regularity must
be necessary for its effect in a minimal way. We illustrate this requirement
by considering the following joint effects structure: the joint type effects A
and B have a common type cause C and each type effect has an alternative
type cause, D and E, respectively.

C

A

B

D

E

Figure 9

No effect occurs without any of its causes. Hence, A ∧ ¬D is minimally
sufficient for C, and so for B. For this type structure, we obtain the true
complex regularity:

(A∧¬D)∨C∨ E↔ B. (2)

A is an INUS condition of B. But an instantiation a of A should never count
as a cause of an instantiation b of B—not even when A is co-instantiated
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with ¬D. In this case, a and b are merely joint effects of an occurring
common cause c.

Baumgartner’s insight is that (A∧¬D)∨C∨ E is not minimally necessary
for B because C ∨ E is still necessary for B. Indeed, B is only instantiated
if C or E is. And C ∨ E is necessary for B in a minimal way: no disjunct
can be removed without losing the necessity for B. C ∨ E is a minimally
necessary disjunction of minimally sufficient conjunctions for B. In general,
Baumgartner requires that each complex regularity must be a minimally
necessary disjunction of minimally sufficient conjunctions for an effect. He
calls such regularities ‘non-redundant’.

The non-redundant regularities are relative to the set of considered vari-
ables. In the above structure, (A ∧ ¬D) ∨ E ↔ B is a non-redundant reg-
ularity relative to the variable set {D, E, A, B}. Extending the variable set
by C, however, renders the regularity redundant. (A∧¬D)∨ E is not nec-
essary for B any longer. B may be instantiated if A and D is, and E is
not—namely when C is also instantiated. The non-redundant regularity
of B after the extension is of course C∨ E↔ B.

Baumgartner defines token causation in terms of type causation. He says,
roughly, that C is a type cause of E iff C is a condition in a non-redundant
regularity for E and remains so under any suitable extension of the vari-
able set. An extension of the considered variables is suitable only if the
additional variables do not introduce dependences among the variables
that are stronger than causation, such as logical or mereological relations,
supervenience, or grounding.

The assumption of multiple type causes ensures that all the non-redundant
regularities are directed. For assume there is a simplistic regularity like
C ↔ E, which has only one type cause for a type effect relative to some
variable set. This simplistic regularity is non-directed: E is minimally
sufficient for C, and C is minimally sufficient for E. However, by the
assumption of multiple type causes, the variable set can either be suitably
extended by another type cause C′ of E or else by another type cause E′

of C. The resulting non-redundant regularity, let’s say C ∧ C′ ↔ E, is
directed: ¬C and ¬C′ alone are minimally sufficient for ¬E, whereas ¬E is
only sufficient for their disjunction¬C∨¬C′. This establishes the direction
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of non-redundant regularities and so the direction of type causation if the
assumption of mutliple type causes is true (Baumgartner, 2013, pp. 94-8).

Equipped with his theory of type causation, Baumgartner defines token
causation roughly as follows. A token event c is a cause of another e iff C is
a type cause of E and there is an active path of direct non-redundant regu-
larities from C to E. An active path of direct non-redundant regularities is a
sequence ⟨C, D1, ..., Dn, E⟩ of conditions, where each condition except E be-
longs to a direct minimally necessary disjunction of a minimally sufficient
conjunction for its successor, and each condition except E is co-instantiated
with all conditions of the respective minimally sufficient conjunction for
its successor.

Baumgartner’s regularity theory reduces causation to material implica-
tions and minimization procedures. No modal notions like counterfactu-
als are required. Moreover, Baumgartner’s theory accounts well for many
causal scenarios. His theory delivers the desired verdicts for overdeter-
mination scenarios, preemption, as well as some short-circuits, and some
switching scenarios. We think it therefore justified to say that Baumgartner
gives the ‘typical’ regularity theory its present form.

We could explain our notion of law-like proposition in terms of Baumgart-
ner’s notion of direct non-redundant regularities: law-like propositions
of a causal model in our framework are direct non-redundant regularities
which are true of the respective causal scenario. This explanation would
make our theory just as reductive as Baumgartner’s and would place it
within the tradition of ‘typical’ regularity theories (Andreas and Günther,
forthcoming). Causation would be reduced to true propositions of partic-
ular fact and, optionally, facts about deviancy from norms. But we refrain
from doing so because it remains unclear how a reductive theory can be
adequately applied to causal models featuring simplistic regularities.

6.1.2 The Challenge of Applicability

How can Baumgartner’s theory be applied to causal scenarios? Well, we
model the scenario under consideration by a set of instantiated and non-
instantiated variables and a set of regularities which remain non-redundant
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under any suitable extension of the variable set. Such a model does, how-
ever, not suffice to apply his theory without worries. He must and does,
in addition, assume that the model of a causal scenario is complete. Oth-
erwise his theory may come to the wrong verdicts about token causation,
as we will show now.

Suppose the regularity C ∨A ↔ E is true and non-redundant relative to
the variable set {C, A, E}, and each variable is instantiated. Then the instan-
tiation a of A is a cause of the instantiation e of E on Baumgartner’s theory.
Indeed, c and a look like overdetermining causes of e. But appearances
may be deceptive. The actual scenario may be the preemption scenario
depicted in Figure 3. The regularity is still true and non-redundant in this
scenario relative to {C, A, D, B, E}: E is instantiated iff C or A is. But the
instantiation of A which is preempted by the one of C should not count
as a cause of e. This problem is quite general: our causal verdicts may
very well change when we consider more variables—even if the relevant
regularities remain non-redundant under the extension.

Baumgartner (2013, pp. 98-9) solves the problem by the assumption of com-
plete description: the models of causal scenarios describe them completely.
A complete description leaves no variables out and contains all direct non-
redundant regularities. The regularity C ∨ A ↔ E does not describe the
preemption scenario completely. It does not model that the efficacy of the
instantiation of A is preempted by the simultaneous instantiation of C. Any
complete description of the scenario, by contrast, does so. Take for exam-
ple our causal model of the scenario, replace = by↔, and reverse the sides.
We obtain the direct non-redundant regularities C ↔ D, A ∧ ¬D ↔ B,
and D ∨ B ↔ E. The actual events and absences are represented by
C, A, D,¬B, E. This complete description models why a is not a cause of e
on Baumgartner’s theory. There is no active path of direct non-redundant
regularities from A to E. A ∧ ¬C is minimally sufficient for B and B is
minimally sufficient for E, but A is not co-instantiated with ¬C. The direct
non-redundant regularities relative to {C, A, D, B, E} completely describe
the structure of the preemption scenario. Indeed, they entail the indirect
regularity C ∨ A ↔ E, which is thereby superfluous for a complete de-
scription. In sum, Baumgartner’s theory is adequately applicable to causal
scenarios only under the assumption of complete description.
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The assumption of complete description entails that the model of a causal
scenario contains all of the variables. As a consequence, the non-redundant
regularities between the variables remain so under any suitable extension
of the variable set—simply because there is none. Let us assume, for ex-
ample, that the just discussed canonical model of the preemption scenario
is complete. Then there are only the five variables {C, A, D, B, E}, and so
this variable set cannot be extended. But this non-extendability in virtue
of the assumption of complete description contradicts the assumption of
multiple type causes. If the variable set cannot be extended, the type effect
D can only have one type cause C. It follows that the direction of the
simplistic regularity C ↔ D in the scenario cannot be established under
the assumption of complete description—at least not by Baumgartner’s
method of suitably extending the variable set. As a result, he is forced to
assume the direction of simplistic regularities in his complete descriptions
of causal scenarios.

Baumgartner faces a dilemma. The assumption of multiple type causes is
essential to obtain the direction of the non-redundant regularities and so
the direction of causation. His theory is not reductive if the assumption is
given up. The assumption of complete description, on the other hand, is
what allows us to adequately apply his theory to causal scenarios in the
first place. If we give it up, we don’t know what the direct non-redundant
regularities are. And so we cannot check whether the paths of direct non-
redundant regularities are active—a check his theory requires to determine
whether this token is a cause of that. But as we have seen in the canonical
preemption scenario, the two assumptions may well contradict each other.
Indeed, they do so in any complete description which features a simplistic
regularity. Hence, Baumgartner cannot make both assumptions—at least
not in all causal scenarios.

In this paper, we treat Baumgartner’s theory as prioritizing the assumption
of complete description whenever it conflicts with the assumption of mul-
tiple type causes. Too many of the canonical causal scenarios discussed
here and in the literature on token causation are modelled by simplistic
regularities or corresponding structural equations. The point of the prob-
lem of unique causes is that it violates the assumption of multiple type
causes: there is only a single type cause for the type effect. This being
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said, we are optimistic that there is a reductive regularity theory which can
be applied to causal scenarios featuring simplistic regularities. One way
to resolve the tension is to drop the assumption of complete description
and to replace it by the assumption that the causal model under consid-
eration is an abstraction of a causal model satisfying the assumption of
multiple type causes. An abstraction of a causal model may abstract away
from certain variables but not from others and the causal verdicts between
the remaining variables must remain invariant. An investigation of the
abstraction idea deserves its own paper.

The boulder scenario depicted in Figure 4 spells further trouble for Baum-
gartner’s theory. To apply his theory, let us assume that its causal model
corresponds to a complete description. Then the hiker’s remaining un-
scathed is uncaused on his theory. The reason is that ‘e’s absence’ has no
type causes. For this to be seen, observe that the complete description cor-
responding to our causal model is empirically equivalent to the complete
description featuring only the regularities F↔ B, F↔ D, and¬F∨F↔ ¬E.
In both complete descriptions, the respective sets of regularities allow for
only two empirically possible situations: {F, B, D,¬E} and {¬F,¬B,¬D,¬E}.

For Baumgartner (2013, pp. 101-5) the empirically equivalent complete de-
scription shows that the regularity B ∧ ¬D ↔ E is empirically redundant
or “ungrounded”. ¬B∨D is not a minimally necessary disjunction of min-
imally sufficient conjunctions for ¬E. The tautology ¬B∨ B is a minimally
sufficient ‘conjunction’ for ¬E, and so are the other tautologies ¬D∨D and
¬F ∨ F. Indeed, the only minimally necessary disjunction of minimally
sufficient conjunctions for ¬E in the boulder scenario is some tautology.
As a good result, the dislodged boulder does not count as a cause of the
hiker’s remaining unscathed. However, the hiker’s ducking does also not
count as a cause—which seems wrong.

We have learned that the underlying problem for Mackie’s regularity
theory—to establish the direction of causation—can be solved for com-
plex enough scenarios, where each type effect has at least two type causes.
Mackie only minimized the conjunctions or sets of actual conditions which
are jointly sufficient for the effect. Baumgartner has seen that necessary
conditions may also contain redundancies, and these redundancies must
be minimized as well to avoid spurious regularities. Yet we have seen that

31



Baumgartner’s theory is either reductive, or else adequately applicable to
causal scenarios, but not both. Our regularity theory is ‘typical’ if we ex-
plain our law-like propositions in terms of non-redundant regularities. But
then—without further ado—our theory would likewise face the challenge
of applicability. Hence, we refrain from doing so for the time being.

Mackie (1974, pp. xiv & 85-6) gave up the ambitious quest for a reductive
regularity theory of causation in the light of the problem of joint effects.
Other authors departed as well from the the tradition of the ‘typical’ reg-
ularity theory of Hume and Mill over Mackie to Baumgartner. We will
discuss their proposals next.

6.2 Non-Reductive Regularity Accounts

Wright (1985, 2011) builds on Hart and Honoré (1959/1985) to develop a
regularity account similar to Mackie’s (1965). The account roughly says
a direct cause is an instantiated NESS condition for its effect: a cause is a
necessary element of a sufficient set for the effect. Less roughly, a token
event c is a direct cause of another e iff the condition C is a necessary element
in a set of actual conditions that are jointly sufficient in a causal way for an
instantiation of E. In many scenarios, C is a NESS condition for E iff C is at
least an INUS condition for E. A NESS condition is a non-redundant part
of a causally sufficient condition.

Unlike Mackie and like Strevens (2007), Wright (2011, pp. 289-90) employs a
notion of causal sufficiency. A set of actual conditions is causally sufficient
for an effect iff all antecedent conditions in a causal law are instantiated.
A causal law specifies a minimal set of actual conditions that entails the
immediate instantiation of some effect. “Immediate” means here that the
effect occurs shortly after the instantiation of all antecedent conditions.
Wright seems to use the direction of time to obtain the direction of causal
laws, and thus the direction of causation. He writes as if he subscribes to
the Humean dictum: causes must precede their effects in time.

This being said, Wright (2011, fn. 33) also writes:

Interpreted in the usual manner, causal succession precludes
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temporally backward causation, through which events today
change events in the past. However, the definition of causal
succession in the text does not preclude such backward cau-
sation, which would occur if the present instantiation of the
antecedent results in the immediately following instantiation
of the consequent (paradoxically) in the past.

This reads paradoxical indeed. Pace Wright (2011, pp. 295-6), the direction-
ality of the causal laws remains unexplained. He owes us an explanation
why, for example, the true regularity A→ E in the scenario of joint effects
is not a causal law. After all, the regularity specifies a minimal set of actual
conditions {A} that entails the instantiation of the joint effect e a moment
later. A similar point applies to the true regularity A → E in the preemp-
tion scenario. Given that the preempted condition A is instantiated, E will
be instantiated a moment later—either because the genuine cause condi-
tion C is instantiated, or because it is not. Indeed, {A} is a minimal set of
actual conditions that entails the occurrence of e. So why is {A}—in both
scenarios—not causally sufficient for e?

Wright (2011) gestures at Mill’s difference method, and empirical obser-
vation and experimentation more generally. We observe in an experiment
what happens after some manipulation in order to identify the effects of
the manipulation. This seems to presuppose the Humean dictum of the
temporal succession of cause and effect. Otherwise we cannot exclude that
the manipulation caused a past event, which in turn caused the observed
events. As we have just seen, Wright allows for backward causation: a
cause may indeed obtain later in time than its effect. The Humean dictum
is thereby jettisoned. And yet this dictum seems necessary to establish
causal laws by observation and experimentation. The verdict stands: it
remains unclear on Wright’s account how the directionality of causal laws
is determined.

Of course, Wright may rely on Baumgartner’s non-redundant regularities
as causal laws (on pain of inheriting the problem of applicability explained
in Section 6.1.2). Without such an amendment, however, Wright’s account
does not account for the directionality of causal laws in terms of non-
causal facts, and hence is not reductive. Strevens (2007), by contrast,
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acknowledges the non-reductive character of his regularity account: the
primitive causal relations on the type level must somehow be determined
by the physical laws.

Wright’s account is transitive by stipulation. He says c is a direct cause
of e iff c and e instantiate a causal law. The right-hand side means C
is a necessary element in a set of actual conditions that is the complete
antecedent of a causal law whose consequent is E. Finally, c is a cause of e
iff there is a sequence of direct causes from c to e. A cause c is connected to
its effect e by a sequence of instantiated causal laws.

Recall the preemption scenario. Under the restriction to the five variables
C, A, D, B, E, there are four causal laws: A∧ ¬C → B, C → D, D → E, and
B→ E. Consider the variation of the preemption scenario, where C is not
instantiated, and so D is not, but A is instantiated and hence is B and E.
In this scenario, our regularity theory says that a causes e via b, and the
absence ¬C does not cause e. We take this to be commonsensical. Wright’s
account, by contrast, wrongly says that the absence ¬C is a cause of e. ¬C
is a necessary element in the set {A,¬C} of actual conditions that entails B
by the causal law A∧¬C→ B. And B is a necessary element in the set {B}
of actual conditions that entails E by the causal law B→ E.

Wright’s account also leads to troublesome verdicts in scenarios that sug-
gest that causation is not transitive. Recall the boulder scenario. The
dislodged boulder causes the ducking of the hiker, which in turn causes
the hiker’s remaining unscathed. Wright’s account says so. However,
Wright’s account must in virtue of its transitivity say that the dislodged
boulder is a cause of the hiker’s remaining unscathed. But this seems
wrong.

A similar point applies to the simple switch. Flipper flips the switch f
causing the train to travel down the right track r, instead of the left. The
train travelling on the right track r causes the train to arrive e. F is an
instantiated NESS condition for R, and R is an instantiated NESS condition
for E. Wright’s account is thus forced to say that the flipping of the switch
is a cause of the train’s arrival. This seems, again, wrong.

In the switch and boulder scenario, F is not a necessary element of a set of
actual conditions jointly sufficient for E and ¬E, respectively. F is neither
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a NESS nor an INUS condition for E in the simple switch and ¬E in the
boulder scenario. Hence, Mackie’s non-transitive theory comes to the
desired verdicts.

Baumgartner’s (2013) regularity theory is likewise not transitive. f in the
simple switch scenario does not count as a cause of e. The reason is that
F is no type-level cause of E: F can be removed from any set of conditions
which are jointly sufficient for E without losing the set’s sufficiency, and so
F is no condition in any non-redundant regularity for E. In the confines of
the scenario, the only minimally sufficient condition for E is the tautology
F∨¬F. Similarly, as we have seen above, the falling boulder is no cause of
the hiker’s remaining unscathed on his theory.

This being said, Baumgartner’s theory judges that the train travelling down
the right track is not a cause of the train’s arrival in the simple switch;
and that the ducking of the hiker is not a cause of the hiker’s remaining
unscathed. The underlying reason is that the only minimally sufficient
condition for the respective effect is a tautology, and so the effects are
uncaused. Our theory, by contrast, delivers the desired verdicts.

6.2.1 Formalisations of the NESS Account

We have embedded Lewis’s regularity theory into causal models and re-
fined it. Others had the idea to embed Wright’s (1985) NESS account into
causal models. The idea surfaced first in Baldwin and Neufeld (2003, 2004).
However, their account is not strictly speaking a NESS account, but rather
a de facto account: an effect counterfactually depends on a genuine cause
when holding certain events and absences fixed by intervention. Holding
this and that fixed, the effect would not have obtained if the cause had not
obtained. Wright (2011, pp. 287&304) by contrast, stays clear of counter-
factuals and aims for a “factual” account. This is, in part, why Beckers
(2021b, p. 6215) writes that Baldwin and Neufeld’s account “is inconsistent
with Wright’s views of the NESS definition.”

Halpern (2008, pp. 205-7) aims to formalize Wright’s (1985) NESS condition
in Halpern and Pearl’s (2005) framework of causal models. Roughly, C is a
Halpern-NESS condition of E in a causal model if C belongs to some set S

35



of actual events and absences such that S is strongly sufficient for E in the
causal model, and S \ {C} is not. In an attempt to clarify Wright’s notion
of causal sufficiency, he says a set S of events and absences is strongly
sufficient for E in a causal model if S remains sufficient for E when adding
any actual events and absences to it. A set S of events and absences is
sufficient for an effect E in a causal model if setting S by intervention
entails E in the resulting submodels across different ‘contexts’, including
non-actual ones.

A Halpern-NESS condition is, however, inadequate as a formalisation of a
NESS condition. As we have observed above, F is not a NESS condition for
E in the simple switch and ¬E in the boulder scenario, but it is a Halpern-
NESS condition for each. And so the flipping of the switch counts as a
cause of the train’s arrival and the dislodged boulder counts as a cause of
the hiker’s remaining unscathed on Halpern’s (2008) NESS test. Another
counterexample, where a genuine NESS condition does not count as a
Halpern-NESS condition may be found in Beckers (2021b, p. 6214).

Beckers (2021b, pp. 6213-4) also provides another formalisation of Wright’s
(2011) NESS account in Halpern and Pearl’s framework of causal mod-
els. He represents Wright’s non-reductive causal laws by likewise non-
reductive structural equations. This allows to define a notion of causal
sufficiency as sufficiency in causal models. The resulting NESS account is
stipulated to be transitive. And so it inherits the problems of the original
NESS account in the boulder and switch scenarios. Moreover, it counts the
absence ¬C a cause of e in the variation of preemption discussed above—
which seems wrong to us. Beckers’s formalisation of the NESS account
resembles the original indeed.

Moreover, Beckers (2021b, p. 6216) proposes an “improvement”. He mar-
ries his NESS account with a counterfactual condition: if c is a cause of
e, then, had c not obtained, its absence would not have been a cause of
e. Sartorio (2006, pp. 73-5) motivates this principle by switching scenarios.
According to Sartorio’s principle alone, flipping the switch cannot be a
cause of the train’s arrival in the simple switch because not flipping the
switch would be a cause of the train’s arrival as well.

Beckers’s counterfactual NESS account defines causation in terms of his
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NESS causation coupled with a path-specific version of Sartorio’s principle.
c is a CNESS cause of e if c is a NESS cause of e along some path p in the
causal model M and ¬C is not a NESS cause of e along any subpath of p
in the causal submodel of M after intervening by ¬C. Notwithstanding
Sartorio’s motivation, flipping the switch is a CNESS cause of the train’s
arrival. Flipping the switch is a NESS cause of the train’s arrival via its
travelling on the right track. And not flipping the switch would not be a
NESS cause of the train’s arrival via its travelling on the right track. The
train’s merely possible path along the left track is quite literally no subpath
of the actual path to its destination. A similar argument shows that the
dislodgement of the boulder is a CNESS cause of the hiker’s remaining
unscathed.

Beckers (2021b, pp. 6210&6216) says his CNESS account is a “nice” and
“natural” compromise of a regularity account and a counterfactual one.
He does, however, not explain why such a compromise is desirable.

The CNESS account is a simpler version of Beckers’s (2021a) definition of
causation. He claims that the latter definition is “a formal expression of the
NESS intuition” (p. 1352). But he employs a counterfactual notion of ne-
cessity instead of a notion of non-redundancy: when testing for causation,
the putative cause is replaced by a non-actual event or absence rather than
simply removed from the minimal set of actual conditions sufficient for the
effect. He roughly defines causation to be the transitive closure of direct
sufficiency coupled with a network-specific version of Sartorio’s princi-
ples. This is not a formal expression of Wright’s NESS account, as Beckers
admits (p. 1342, fn. 1). He also acknowledges that the explicit statement
of his favourite definition “looks even more complicated than” Halpern
and Pearl’s (2005) de facto definition (p. 1354). Except for one of the many
examples in the 2005 paper, the two definitions come to the same verdicts
(p. 1358). Moreover, the definition agrees with the CNESS account on the
verdicts in the simple switch and boulder scenarios. So why should we
settle for it?

Beckers (2021a, pp. 1361-3) argues that his favourite definition delivers
“consistent (and intuitive) answers” to a series of closely related scenarios—
unlike many other accounts of causation, including the de facto definitions
of Halpern and Pearl (2005) and Halpern (2015). We leave it to the reader
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to verify that our regularity theory delivers the results Beckers desires in
the series of scenarios. One of his selling points supports our theory as
well.

6.3 Counterfactual Accounts

Our regularity theory does not rely on any condition of counterfactual de-
pendence. It does not ask what would have happened, had the putative
cause not obtained. Thereby our theory does not rely on counterfactual
dependence, de facto dependence, or Sartorio’s principle—unlike the ac-
counts of Beckers and Vennekens (2017, 2018) and Beckers (2021b,a) for
example. Our regularity theory is not counterfactual.

In this section, we briefly explain counterfactual accounts of causation and
discuss a switching scenario proposed by Halpern and Hitchcock (2010).
Finally, we say a few words on Gallow’s (2021) account—one of the leading
counterfactual accounts at the moment.

The starting point of counterfactual accounts of causation is that coun-
terfactual dependence between distinct occurring events is sufficient for
causation. The simple counterfactual account elevates counterfactual de-
pendence between actual events and absences to a necessary and sufficient
condition for causation. The token event c is a cause of a distint token
event e iff c and e are actual, and had c not been actual, e would not have
been actual. Notably, the simple counterfactual account solves the simple
switch and the boulder scenario. Had the switch not been flipped, the train
would have arrived at its destination anyways. Had the boulder not been
dislodged, the hiker still would have remained unscathed. The flipping of
the switch and the dislodgement of the boulder do not make a difference
to the train’s arrival and the hiker’s remaining untouched, respectively.
Moreover, on a non-backtracking interpretation of counterfactuals, the
train travelling on the right track is a cause of the train’s arrival, and the
ducking is a cause of the hiker’s remaining unscathed.

As is well-known, however, the simple counterfactual account has trou-
bles with scenarios of preemption. Had the genuine cause c not occurred,
the effect e would still have occurred—due to the backup cause a. Hence,
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the genuine cause c does not count as a cause. In response, Lewis (1973)
says that causation is the transitive closure of non-backtracking counterfac-
tual dependence between actual events and absences. This solves certain
preemption scenarios, but not others. Unfortunately, it also makes flip-
ping the switch a cause of the train’s arrival. There is a chain of true
non-backtracking counterfactuals running from flipping the switch over
the train’s travelling on the right tracks to its arrival at the destination.
The dislodgement of the boulder likewise counts as a cause of the hiker’s
remaining unscathed.

There are plenty de facto accounts of causation using causal models (Hitch-
cock, 2001; Woodward, 2003; Halpern and Pearl, 2005; Halpern, 2015). For
the simple switch, they have all in common that flipping the switch counts
as a cause of the train’s arrival (Blinded, forthcoming). For the train’s ar-
rival counterfactually depends on flipping the switch when holding fixed
by intervention that the train does not travel on the left tracks. And simi-
larly for the boulder scenario.

This being said, Halpern (2016, pp. 79-81&90-1) shows how the definitions
of Halpern and Pearl (2005) and Halpern (2015) can be amended by a condi-
tion of normality so that they solve the simple switch. Roughly, causation
is then understood as de facto dependence witnessed by a possible world
which is at least as normal as the actual one. The idea is that the non-actual
world, where the train does not travel on the left track even though the
switch has not been flipped, is less normal than the actual world. Hence,
there is no possible world at least as normal as the actual witnessing that
the train’s arrival de facto depends on the flipping.

Another resort for causal modellers when their accounts deliver an un-
desired result is to say that the causal model employed to represent the
causal scenario is inappropriate. Halpern and Hitchcock (2010, Sec. 4.3)
argue that values of different variables in a causal model must be logically
independent, and further that the variables R and L in the simple switch
are

arguably not independent; the train cannot be on both tracks
at once. If we want to model the possibility of one track or
another being blocked, we should use, instead of [L and R],
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variables LB and RB, which indicate whether the left track or
right track, respectively, are blocked. This allows us to represent
all the relevant possibilities without running into independence
problems.

We disagree: the variables R and L are not logically dependent. As Beckers
and Vennekens (2017, p. 14) put it, “it is a matter of physics, not logic, that
a train can only occupy a single track at any given moment.”

Halpern (2016, pp. 38-9) proposes the modified switch scenario, where the
tracks are unblocked but might be blocked, in an attempt to save the verdict
that flipping the switch is on Halpern’s (2015) definition not a cause of the
train’s arrival. Here is his causal model:

E = (F∧¬RB)∨ (¬F∧¬LB)
F,¬RB,¬LB, E

Halpern (2016, pp. 38) says “it seems strange to call flipping the switch
a cause of the train arriving when in fact both tracks are unblocked.”
Still, the definition of Halpern and Pearl (2005) says so. And the one of
Halpern (2015) counts the flipping as ‘part of’ the cause { f ,¬lb}, where
parts of causes correspond to “what we think of as causes” (Halpern, 2016,
p. 25). The definitions amended by a condition of normality overcome the
problem if the non-actual world, where the left track is blocked, is less
normal than the actual world. For then, there is no de facto dependence
of e on f witnessed by a possible world which is at least as normal as the
actual one.

Our regularity theory without the deviancy condition likewise says that
the flipping of the switch f is a cause of the train’s arrival e. Conditions (i)-
(iv) are satisfied for L′ = L and F ′ = {¬RB}. Indeed, flipping the switch
is a member of a maximised minimal set {F,¬RB} of actual conditions
which, in the presence of the law-like proposition, entails the effect in a
forward-directed way. f is also an insufficient but non-redundant part of
an instantiated sufficient condition for e. F is an INUS condition of E in
Halpern’s switch. In the simple switch, by contrast, flipping the switch is
redundant, which is arguably a feature of typical switching scenarios.
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Our regularity theory amended by the condition (v) of deviancy, however,
says that the flipping of the switch f is not a cause of the train’s arrival e.
For this to be seen, note that ¬LB is in F \F ′ and the variable LB is neither
a descendant nor an ancestor of F, and yet ¬LB is less deviant than LB.
Hence, f is not a cause of e, as desired in Halpern’s switch.

We have seen that switching scenarios pose problems for many accounts of
causation. It is thus not surprising that their representation is controversial.
Our regularity theory without deviancy condition delivers the desired
results for the “basic” switch discussed by Paul and Hall (2013, p. 232).
Amended by the deviancy condition, our theory also delivers the desired
results for the more “realistic” switches discussed by Hitchcock (2009,
p. 395-6). The amendment by the deviancy condition may well be worth
it.

If we choose the optional deviancy condition, counterfactual dependence
is clearly not sufficient for causation on our theory. For this to be seen,
reconsider the basic structure of omissions. The absence ¬F does not
prevent e from occurring. But had f occurred, e would not have occurred.
Still, Putin’s failure to water the flowers is not a cause of their death. For
Putin’s omission to water the flowers is not deviant—he did not promise
to water them.

6.3.1 Gallow’s Account

Gallow (2021) offers perhaps the most sophisticated counterfactual account
of causation. On closer inspection, he actually offers several closely related
accounts. One is guided by the idea that a cause must transmit deviancy
via an active causal network to its effect. Roughly, each member of a set
C of particular propositions, or variable assignments, is a cause of E in a
causal model M iff there is a minimal causal network in M leading from C
to E, and the propositions in C∪ {E} are more deviant than their respective
negations (p. 83). A network consists of directed paths, which start from
some C ∈ C and end up in E. In a causal network, the value of each variable
not in C counterfactually depends on certain values of its parent variables.
Such dependences are called local.
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This counterfactual account can handle an impressive set of scenarios in-
cluding some switches, but it has troubles in the simple switch. There
is a minimal causal network leading from flipping the switch {F} to the
train’s arrival E: F → R → E. Within this causal network, E counterfac-
tually depends on R, and R counterfactually depends on F. Moreover, the
proposition F departing from the minimal network to ¬L and the return
proposition E are both more deviant than their negations. Hence, flipping
the switch counts as a cause of the train’s arrival on Gallow’s account.

Gallow (2021, p. 87) himself observes a consequence of his deviancy re-
quirement: “default, inertial states can be neither causes nor effects.” This
means that preventers do not count as causes in simple prevention scenar-
ios. Assassin poisons target’s coffee. Bodyguard prevents target’s death by
putting antidote in her coffee. It seems that bodyguard’s putting in the an-
tidote causes target’s default survival. But the present account must deny
causation here and likewise for omissions which are supposedly causal.

The problem with genuine prevention cases and omissions motivates Gal-
low (2021, p. 88) to mention three variants of the above theory. These
variants agree that, for C to be a cause of E, there must be a minimal causal
network in M leading from C to E. They differ in what actual values of
the cause and effect variables must be deviant. There are three options:
(i) causes must be deviant, but not effects; (ii) effects must be deviant, but
not causes; (iii) neither causes nor effects must be deviant. The variants no
longer transmit deviancy from cause to effect.

Gallow doesn’t say which of the constraints on deviancy should be pre-
ferred. We recommend variant (i): causes must be deviant, but not effects.
With this constraint in place, it is easy to show that Gallow’s theory dis-
criminates between bogus and genuine simple preventions in the same
way our theory does. Likewise, the discrimination between supposedly
causal and presumably non-causal omissions is not a problem any more
for Gallow’s theory. We merely have to declare that a violation of a norm
is more deviant than conforming to it. If a neighbour fails to water the
plants despite promising to do so, this is then recognized as a cause of the
death of the plants. Putin’s not watering these plants is not as long as he
doesn’t have an obligation to do so.
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Finally, recall the boulder scenario. The hiker’s remaining unscathed by the
dislodged boulder is default. If effects are admitted to have non-deviant
values, Gallow’s account runs into a problem: it says that the dislodgement
of the boulder and its rolling toward the hiker are joint causes of the hiker’s
remaining unscathed. There is a minimal causal network leading from
{F, B} to ¬E: F → D → E ← B. To verify that there is such a network,
we need to specify contrasts for the values of F, B, and D. Since we are
free to assign, for all non-effects, a contrast which does not differ from the
actual value of the variable, we can choose the following contrasts: F and
D are false, while B is true. Then, it holds for both D and E that their value
locally depends on the values of their parents, and so F → D → E ← B is
a causal network. Minimality is easy to show for this network. Hence, the
dislodged boulder is a cause of the hiker’s remaining unscathed on variant
(i) of Gallow’s account—a joint cause with the boulder’s rolling toward the
hiker. This is, of course, an unfortunate verdict.

We suggest two solutions for the problem that the dislodged boulder counts
as a cause on variant (i) of Gallow’s account. First, we may require that
all members of the set C of presumed causes have contrasts which differ
from their actual values. Second, we may require that any assignment of
contrasts to a variable’s parents must satisfy all the structural equations of
the causal model. This being said, these solutions may of course lead to
troubles in other causal scenarios.

7 Conclusion

We have refined Lewis’s regularity theory of causation by embedding it
into a framework of causal models. Our theory says that causation is
forward-directed inferability along lawful paths. It solves the problems that
speak decisively against Lewis’s regularity theory: the problems of unique
causes, joint effects, and preemption. It can also handle causal scenarios
which suggest that causation is not transitive, like the simple switch and
boulder scenarios.

We have offered an optional condition of deviancy. Our theory amended
by this condition can address the problem of isomorphic models. We have
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shown that our amended theory delivers the desired verdicts for the bogus
prevention scenario, even though this scenario is isomorphic to a scenario
of overdetermination. Moreover, our theory says that deviant omissions
are genuine causes while non-deviant omissions are not. Perhaps the
deviancy condition earns its keep, as it also helps our theory to account for
many switching scenarios.

We have argued that the present form of the ‘typical’ regularity theory is
given by Baumgartner’s (2013). His theory reduces causation to material
implications and minimization procedures. He thereby proposes a theory
of causation free of counterfactuals, any other modal notion, or epistemic
notions (Andreas and Günther, 2019, 2020; Andreas and Günther, 2021a).
And it is notable that his theory accounts well for many causal scenar-
ios, including overdetermination, preemption, as well as some switching
scenarios, and some short-circuits. Only recently counterfactual theories
of causation have been able to account for these scenarios (Andreas and
Günther, 2021b; Gallow, 2021).

Baumgartner (2013, p. 106) prefers not to amend his regularity theory by a
notion of deviancy or typicality. He points to the intuition that causation
is an entirely objective matter that is independent of contexts and norms.
This being said, he outlines how his theory could be amended by a notion
of deviancy. He can thereby secure the verdict in the bogus prevention
scenario that bodyguard’s putting in the antidote is not a cause of target’s
survival. However, he must still say that assassin’s refraining to poison
target’s coffee is a cause of target’s survival. But this goes against common
sense: the typical absence of poison does not cause target’s survival.

Moreover, Baumgartner’s theory, like Andreas and Günther’s (2021b), has
troubles with the simple switch and boulder scenarios. The theories say,
against common sense, that the train travelling down the right track is not
a cause of the train’s arrival in the simple switch, and that the ducking of
the hiker is not a cause of the hiker’s remaining unscathed. We have also
pointed out that Gallow’s (2021) counterfactual accounts of causation have
troubles with these examples.

We have discussed that we could rely on Baumgartner’s non-redundant
regularities to save the reductivity of our theory. But then, our theory
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would—just like Baumgartner’s—face the challenge of applicability: it
would not be adequately applicable to many of the causal scenarios dis-
cussed in the literature. We hope to overcome this challenge in future
work.

Our theory amended by the condition of deviancy is in a way still incom-
plete. We haven’t said much on what norms are and when events deviate
from norms in a given scenario. In future work, our theory should be
amended by a theory of what norms are. We can then also address the
question whether or not norms can be reduced to propositions of particular
matter of fact. For now it should suffice to say that our theory emerges as
a competitor to the most advanced regularity and counterfactual accounts
of causation.
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