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Abstract

In this paper, we propose a regularity theory of causation. The theory
aims to be reductive and to align with our pre-theoretic understanding
of the causal relation. We show that our theory can account for a wide
range of causal scenarios, including isomorphic scenarios, omissions,
and scenarios which suggest that causation is not transitive.
Keywords. Causation, Regularity Theory, Causal Models.

1 Introduction

Hume observed that all our reasoning about matters of particular fact is
grounded in the relation of cause and effect. This relation, if any, we un-
derstand perfectly. And yet there is no theory of causation at our disposal
that tells us reliably what it means that this is a cause of that. The lack of a
satisfying theory of causation is, moreover, not for a lack of effort. There
have been many attempts to analyse causation. Hume himself defined a
cause to be

an object, followed by another, and where all the objects similar
to the first are followed by objects similar to the second. Or in
other words where, if the first object had not been, the second
never had existed. (Hume, 1748/1975, Sect. VII)
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The first sentence says that the relation between cause and effect instanti-
ates a regularity (Andreas and Günther, 2021). This idea has been devel-
oped further. We learned from Mackie (1965, 1974) and Wright (1985) that
the sets of actual conditions which are jointly sufficient for the effect to oc-
cur must be minimal. And Baumgartner (2013) shows that the regularities
must be non-redundant for the effect. The regularity theory thus counts
as a cause each member of any minimal set of actual conditions that are
jointly sufficient for the effect to occur in the presence of non-redundant
regularities.

The second sentence of the quote says that an effect counterfactually de-
pends on its cause. This idea has been taken up by Lewis (1973) who
analyses causation as the transitive closure of counterfactual dependences
between actual events and absences. For Hitchcock (2001), a cause is con-
nected by an active causal path to its effect. And Gallow (2021) adds
that the active causal path, or rather active causal network, must transmit
deviancy from cause to effect.

In this paper, we propose a regularity theory of deterministic token cau-
sation.1 The motivating idea is this: causation is deviant forward-directed
inferability along the causal paths of direct non-redundant regularities.
Building on Baumgartner’s work, we aim to reduce causation to true
propositions of particular fact and deviancy from norms. The true propo-
sitions of particular facts and minimization procedures give rise to non-
redundant regularities. This will allow us to define causal models in terms of
true propositions of particular fact and direct non-redundant regularities.
These causal models are ultimately obtained from the true propositions of
particular fact, unlike the causal models employed by the counterfactual
theories of Hitchcock (2001), Halpern and Pearl (2005), and others. We will
show that our regularity theory aligns with the commonsense understand-
ing of the causal relation—even in causal scenarios where Baumgartner’s
does not.

We proceed as follows. First, we present a regularity theory due to Lewis
(1973) and restrict the regularities to direct and non-redundant ones. We
then define causal models as tuples of direct non-redundant regularities
and propositions of particular fact. This allows us to state our preliminary
theory of token causation. We will show how our theory solves a wide
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range of causal scenarios and amend it where necessary. Finally, we aim
to establish the reductiveness of our theory by avoiding model-relativity.

2 Direct Non-Redundant Regularities

Lewis (1973) authored and rejected a regularity theory. It can be summa-
rized as follows. Let A be the proposition that is true if and only if (iff)
some token event a of type A occurs. If no token event of type A occurs,
¬A is true. Furthermore, let L denote a set of true regularities, and F a
possibly empty set of true propositions describing particular facts.2 An
event c is a cause of a distinct event e iff there is a set L of true regularities
and a set F of true propositions of particular fact such that

(1) C and E are true,

(2) L∪F |= C→ E,

(3) L∪F ̸|= E, and

(4) F ̸|= C→ E.

(1) says that cause and effect are actual. (2) says that a cause expressed
by C is sufficient for its effect in the presence of L∪F . However, (3) says
that L∪F alone does not entail E. Given L∪F , C is necessary for E. In
this sense, L∪F ∪C is a minimal set sufficient for E. (4) says that F alone
does not entail the material implication C → E. L is not redundant in the
minimal sufficiency of L∪F ∪C for E.

Lewis made a case that the regularity theory cannot properly distinguish
between genuine causes and both effects and preempted would-be causes.
The underlying reason is that some of the true regularities inL are spurious.
Consider, for illustration, the structure in Figure 1, where C is a common
type-cause of D and E. In addition, B and A are alternative type-causes of
D and E respectively.
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Figure 1: C is a common type-cause of D and E.

B is sufficient for D, and so is C. Likewise, each of C and A alone is sufficient
for E. But ¬B ∧D is also sufficient for E. When some token event of D
occurs, and no token event of B, then some token event of C occurs. For no
effect occurs without any of its causes. And C is sufficient for E. We have
thus the following true but spurious regularity:

(¬B∧D)∨C∨A↔ E.

If a token event of type C occurs, for example, a token event of type E
occurs. Similarly, if no token event of type B occurs and a token event of
type D occurs, then a token event of type E occurs. Furthermore, if a token
event of type E occurs, then a token event of type A, or of type C occurs.

Given the above regularity is in L and F = {¬B}, the occurring event d
is then a cause of the occurring event e on the above regularity theory.
Indeed, D is then an INUS condition and a NESS condition for E. If the
token events d of D and e of E occur, Mackie’s INUS theory and Wright’s
NESS theory wrongly count the event d as a cause of e.

In the meantime, Baumgartner (2013) has shown that spurious regular-
ities can be pruned from L by requiring them to be non-redundant. A
non-redundant regularity for E is a minimally necessary disjunction of
minimally sufficient conjunctions for E. To be precise, let C be a set of min-
imal setsAi of propositions of particular fact that are sufficient for E.

∧
Ai

is some conjunction of the members of Ai, and
∨

i
∧
Ai some disjunction

of such conjunctions.3 We say C is minimally necessary for E iff
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(a)
∨

i
∧
Ai ↔ E is true, and

(b) there is no C′ ⊂ C such that
⋃

jA j =
⋃

C′ and
∨

j
∧
A j ↔ E is true.

Whenever C is minimally necessary for E, we say that
∨

i
∧
Ai ↔ E is a

non-redundant regularity for E.

Now, {{¬B, D}, {C}, {A}} is not minimally necessary for E, but {{C}, {A}} is.
The non-redundant regularity for E is thus

C∨A↔ E.

This solves the problem of joint effects of a common cause under the as-
sumption that any type effect has more than one alternative type cause—
more than one minimally sufficient conjunction. The assumption likewise
solves the problem of the direction of causation. The non-redundant regu-
larity implies a non-symmetry: each of C and A alone is sufficient for E, but
E is only sufficient for the disjunction C∨A. Therefore, E is not a cause of
C on the above regularity theory (assuming L = {C∨A ↔ E, C∨ B ↔ D}
contains all and only the non-redundant regularities for E and D).

The non-redundant regularities are relative to the set of propositional
variables we consider. For this to be seen, consider the above structure
restricted to the variable set {C, A, E}. This simple structure of overdeter-
mination is fully described by the non-redundant regularity C ∨ A ↔ E.
Indeed, a token event of type E occurs only if a token event of type C, or
one of type A occurs, or both; and for any occurrence of a token event of
type A or C, there is an occurrence of a token event of type E.

However, let us consider a structure of preemption enriched by information
about the token events. In Figure 2, a grey-shaded node indicates that some
token event of the relevant type occurs, and a white node that no token
event of the relevant type occurs.

5



C

A

D

B

E

Figure 2: Preemption.

C is sufficient for D, which in turn is sufficient for E. Similarly, A is sufficient
for B, which in turn is sufficient for E. But C is also sufficient to prevent
any token event of type B from occurring. This is represented by the
‘preventive’ arrow between C and B. In the scenario under consideration,
token events of both C and A occur. c is a cause of e, but a is a mere would
be cause of e: c preempts the causal efficacy of a.

The regularity C ∨ A ↔ E is still true and non-redundant for the struc-
ture of preemption. However, this regularity does not fully describe the
structure relative to the variable set {C, A, D, B, E}. In order to obtain a
full description, we require that all non-redundant regularities in L are
direct. A non-redundant regularity

∨
i
∧
Ai ↔ E is direct relative to a

variable set iff there are no true non-redundant regularities
∨

j
∧
B j ↔ C

and
∨

k
∧
Ck ↔ E, where the same variable appears as subformula in some∧

Ai and some
∧
B j, while C appears as subformula in some

∧
Ck.

The non-redundant regularity C ∨A ↔ E is not direct relative to the ex-
tended variable set: there are the true non-redundant regularities C ↔ D
and D ∨ B ↔ E, and C appears as subformula in C ∧ A and C, while D
appears in D. (Any formula is a subformula of itself). The non-redundant
regularities C ↔ D, A ∧ ¬C ↔ B, and D ∨ B ↔ E, by contrast, are all
direct relative to the extended variable set. There are no other direct non-
redundant regularities. In general, a causal structure is fully described by
all and only the direct non-redundant regularities.

How does Lewis’s regularity theory amended by direct non-redundant
regularities treat preemption? Well, c is a cause of e, as it should be.
For this to be seen, take F = ∅. Conditions (1)-(4) are then satisfied.
Unfortunately, a also counts as a cause of e. For this to be seen, observe
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that condition (1) is satisfied, and condition (3) is satisfied for F = ∅ or
F = {¬B}. Both options also satisfy condition (4). As to condition (2),
let’s consider the first option F = ∅. There are only two cases: if ¬C, then
the direct non-redundant regularities in L entail A → E via B. If C, the
direct non-redundant regularities in L entail E, and thus A → E. Hence,
L∪F |= A → E. Condition (2) is satisfied, and so a wrongly counts as a
cause of e.

What went wrong? Well, A and B are—just like C and D—type-causes
of E. What makes the difference in the preemption scenario between
C and A is that a token event of type D occurs, while no token event
of type B occurs. The spirit behind regularity theories is that the true
propositions of particular fact should be respected. But the entailment of
A → E involves an inference via B, even though no token event of type B
occurs. This suggests that the regularity theory of Lewis is too liberal as
to the choice of the set F of true propositions of particular fact. There is a
minimality constraint on F , but a maximality constraint is lacking which
would guarantee that ¬B ∈ F .

Such a maximality constraint alone, however, does not help Lewis’s regu-
larity theory. Even if F = {¬B}, a counts as a cause of e. For this to be seen,
observe first that the direct non-redundant regularities in L and ¬B entail
¬A∨C. There are again only two cases: if¬C, thenL andF entail¬A, and
thus A → E. If C, then L and F entail E, and thus A → E. Condition (2)
is again satisfied. But observe that this reasoning is artificial. Intuitively,
a is not a cause of e because A does not entail E in a forward-directed way
via B. If you prefer, we may alternatively say that there is no causal path
from A over B to E that is active in the sense that a token event of each of
the types A, B and E occurs.

Baumgartner (2013) develops a theory of token-causation from his theory
of type-causation and the notion of an active causal path. His theory of
type-causation requires that the regularities remain non-redundant under
any suitable extension of the variable set. As a result, there are direct and
indirect non-redundant regularities that already tell us which relations of
type-causation are transitive, and which are not. He defines, roughly, a
token event to be a cause of another iff there is an active causal path from
the first token event or absence to the second via the direct non-redundant
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regularities. (See p. 98 for the formal details.)

Baumgartner’s regularity theory reduces causation to material implica-
tions and minimization procedures. He thereby proposes a theory of cau-
sation free of any modal notion. And it is notable that his theory accounts
well for many causal scenarios, including overdetermination, preemption,
as well as some switching scenarios, and some short-circuits. Only very
recently counterfactual theories of causation have been able to account for
these scenarios (Andreas and Günther, 2021b; Gallow, 2021).

This being said, Baumgartner’s regularity theory works only under the
assumption that each variable set is extendable such that each type effect
has at least two alternative type causes. The assumption seems empirically
accurate, even though it is contingent: it depends on the actual features of
our world. We think it would be better if a theory of causation were even
able to come to the right verdicts in all conceptual possibilities—including
a scenario where one event is the only cause of another. We aim for such a
conceptually accurate regularity theory that aligns with our understanding
of the causal relation.

3 Causal Models

Causal models represent causal scenarios. In a causal scenario like preemp-
tion, certain events occur, others do not, and we have a certain structure
that tells us how event types depend on other event types. We can define a
causal model ⟨L,F ⟩ by two components: a set L of direct non-redundant
regularities and a set F of propositions of particular fact. A ∈ F means
that some token event a of type A occurs. ¬A ∈ F , by contrast, means that
no token event of type A occurs. In other words, ¬A denotes the absence
of any event of type A, or simply the absence of A.

The preemption scenario can be represented by a causal model ⟨L,F ⟩,
whereL = {C↔ D, B↔ A∧¬C, E↔ D∨B} and F = {C, A, D,¬B, E}. For
readability, we represent causal models in two-layered boxes. The upper
layer shows the set L of direct non-redundant regularities ordered in the
following way: the single variable is on the left-hand side and the formula
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in disjunctive normal form on the right-hand side. The lower layer shows
the set F of propositions of particular fact. For the preemption scenario,
we obtain:

D↔ C
B↔ A∧¬C
E↔ D∨ B
C, A, D,¬B, E

Let Γ be a set that contains propositional formulas. We understand entail-
ment in the standard way: Γ |= ϕ iff the propositional formulaϕ is satisfied
by any classical valuation that satisfies all members of Γ. We define the
entailment relation for causal models as follows:

⟨L,F ⟩ |= ϕ iff L∪F |= ϕ.

Causation is not symmetric, if not asymmetric outright. If C is a cause of E,
it is thereby not the case that E is a cause of C. Recall that non-redundant
regularities of the form E↔

∨
i
∧
Ai are generally not symmetric: the type-

effect E is only sufficient for a disjunction, while each disjunct is sufficient
for E.

There are, however, problematic limiting cases. Non-redundant regulari-
ties like D↔ C are symmetric: D is sufficient for C, and C is sufficient for
D. There are two promising ways to determine the direction of causation
in these limiting cases. One could reconsider a Humean approach to the
direction of causation that relies on the direction of time (Andreas and
Günther, 202xc). If, for example, the token events of type C precede the
token events of type D, we may say that D is the type-effect. Alternatively,
one could extend the variable set until the symmetry is broken (Baumgart-
ner, 2013). If we extend the variable set by C′, which is another type-cause
of D, the resulting non-redundant regularity D ↔ C∨ C′ breaks the sym-
metry. In what follows, we assume that the direction of non-redundant
regularities can always be determined. We can then say that any type effect
is by convention on the left-hand side of a direct non-redundant regularity
and its direct type causes on the right-hand side.
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Still, non-redundant regularities allow for inferences in two directions.
E ↔ D∨ B, for example, allows us to infer from either of the type causes
D and B to the type effect E. This inference goes from type causes to some
type effect. Let us call any such inference forward-directed. By contrast, the
type effect E allows us to infer the disjunction of its type causes D∨B. This
inference goes from some type effect to its type causes. Let us call any such
inference backward-directed.

One idea behind our theory of causation is that a token cause allows us
to infer its token effect in a purely forward-directed way. To implement
this idea, we need to isolate the forward-directed consequences of actual
events and absences from the backward-directed ones. In general, we
can isolate the forward-directed causal consequences of some occurring
token event a of type A for a causal model ⟨L,F ′⟩ by a setting. Roughly
speaking, a setting removes a non-redundant regularity A↔

∨
i
∧
Ai from

L and replaces it by a true proposition, either A or ¬A. Thereby backward-
directed inferences from A or ¬A are excluded.

Suppose we want to determine the forward-directed causal consequences
of the occurring token event a of type A for a causal model ⟨L,F ′⟩, where
F
′ is a subset of the set F of true propositions particular facts. The setting

of A in this causal model results in a causal model ⟨LA,F ′ ∪ {A}⟩. If
A ↔

∨
i
∧
Ai is a member of L, LA is obtained from L by removing this

non-redundant regularity. Otherwise LA = L. We call ⟨LA,F ′ ∪ {A}⟩ the
causal submodel of ⟨L,F ′⟩ after the setting of A. By removing the non-
redundant regularity for A from L, backward-directed inferences from A
or ¬A are excluded in the causal submodel.

Complex settings may be represented by a set S of true propositions of
particular fact. Let us denote settings by an operator [·] that takes a causal
model ⟨L,F ′⟩ and a set S of true propositions of particular fact, where
both F ′ andS are subsets of the true propositions F of particular fact, and
returns a causal model—the submodel of ⟨L,F ′⟩ after the setting of S. The
setting by a set of true propositions of particular fact is defined as follows:

⟨L,F ′⟩[S] = ⟨LS,F ′ ∪ S⟩ (⟨L,F ⟩[S])
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where

LS = {(A↔
∨

i

∧
Ai ∈ L) | A < S and ¬A < S}.

LS is the subset of L that contains each direct non-redundant regularity
A ↔

∨
i
∧
Ai whose variable A does not appear in S. After setting S

in the causal model ⟨L,F ′⟩, the set S becomes part of the propositions of
particular fact of the resulting submodel. Note that the resulting submodel
is again a causal model consisting of a set of non-redundant regularities
and a set of propositions of particular fact.

Settings will always only set true propositions of particular fact. No propo-
sitions contrary to the true facts are ever set, unlike the interventions
employed by Halpern and Pearl (2005) for example. As a consequence,
the resulting submodels are not inconsistent provided the original causal
models were not.

We are now in a position to state our preliminary theory of causation.

Definition 1. Let ⟨L,F ⟩ be a causal model such that F |= L. c is a cause
of e relative to ⟨L,F ⟩ iff there is a set F ′ ⊆ F such that all of the following
conditions are satisfied:

(1) ⟨L,F ⟩ |= C∧ E.

(2) ⟨L,F ′⟩ ̸|= E, and there is no F ′′ so that F ′ ⊂ F ′′ ⊆ F and ⟨L,F ′′⟩ ̸|=
E.

(3) ⟨L, ∅⟩[F ′][{C}] |= E.

(1) says that cause and effect are actual. (2) says that there is a set F ′

of propositions of particular facts that does not entail the effect E in the
presence of the direct non-redundant regularities, and F ′ is maximal: any
strict superset of F ′ would entail E in the presence of the direct non-
redundant regularities. (3) says that F ′ and the direct non-redundant
regularities do entail E together with C in a forward-directed way.

On our preliminary theory, a cause is each member of any maximised
minimal set of actual conditions which are jointly sufficient in a forward-
directed way for the effect to occur in the presence of direct non-redundant
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regularities. Causation so understood amounts to forward-directed infer-
ability along direct non-redundant regularities.

4 Scenarios

Let us revisit the scenario of preemption.

C

A

D

B

E

D↔ C
B↔ A∧¬C
E↔ D∨ B
C, A, D,¬B, E

Relative to ⟨L,F ⟩, c is a cause of e. Condition (1) is satisfied, and will be
satisfied in all of the scenarios to come. TakeF ′ = {¬B}. Then ⟨L,F ′⟩ ̸|= E,
but any strict superset ofF ′would entail E in the presence ofL. Condition
(2) is satisfied. And condition (3) is satisfied as well: {D↔ C, E↔ D∨B} ∪
{¬B} ∪ {C} |= E.

Relative to ⟨L,F ⟩, a is not a cause of e. Condition (2) is only satisfied for
F
′ = {¬B}. But then the direct non-redundant regularity of B is removed

from L by the setting of ¬B. Condition (3) is then violated: {D ↔ C, E ↔
D∨ B} ∪ {¬B} ∪ {A} ̸|= E. Our preliminary theory solves preemption.

We leave it to the reader to verify that our preliminary theory accounts for
other classic scenarios like overdetermination, prevention, double preven-
tion, and more. Instead we turn towards the problem of isomorphic causal
models.

4.1 Isomorphisms

The problem of isomorphic causal models is that there are pairs of scenarios
which are structurally indistinguishable for simple causal model accounts,
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and yet our causal judgments differ (Hall, 2007, p. 44). We call a causal
model account simple if it only factors in structural equations—or our
direct non-redundant regularities—together with values of variables—or
our propositions of particular fact.

Let us illustrate an instance of the problem. Here is the causal model of a
scenario of overdetermination.

E↔ C∨A
C, A, E

We transform this causal model into a structurally indistinguishable or
isomorphic causal model. To do this, negate both sides of the direct non-
redundant regularity. Then substitute C by F, A by ¬D, and E by ¬E. The
result is the isomorphic causal model:

E↔ ¬F∧D
F,¬D,¬E

And indeed, ¬E is ‘overdetermined’ by F and ¬D. This causal model can
be represented by Figure 3.

F

D

E

Figure 3: Bogus Prevention.

Here is an example for this structure. Poisonings D are type causes of
deaths E, and antidotes F are type preventers of deaths E. In the scenario
under consideration, let’s say, there is an assassin, a potential target, and
her bodyguard. The assassin refrains from poisoning target’s coffee ¬D,
and her bodyguard puts antidote in her coffee F. Target survives, of course.
Since target’s coffee is not poisoned in the first place, there is no danger at
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all that she dies. The prevention by bodyguard’s antidote is bogus. And so
bodyguard’s putting the antidote in her coffee is arguably no cause of her
survival (Hiddleston, 2005; Hitchcock, 2007).

Recall that there is no structural difference for simple causal model accounts
between F in the scenario of bogus prevention and C in the scenario of
overdetermination. However, our causal judgments differ. We judge C to
be a cause of E in the overdetermination scenario, while we do not judge F
to be a cause of ¬E in the bogus prevention scenario.

Simple causal model accounts of causation—like the accounts of Hitchcock
(2001), Halpern and Pearl (2005), and Andreas and Günther (2021b, 202xb)
for example—cannot distinguish between F and C in the isomorphic causal
models: C counts as a cause iff F does. This means simple causal model
accounts must incorrectly classify F as a cause in the bogus prevention
scenario if they correctly classify C as a cause in the overdetermination sce-
nario. This is a problem indeed if we take our pre-theoretic understanding
of the causal relation seriously.

Our preliminary theory of causation is a simple causal model account,
and so is likewise susceptible to the problem of isomorphic causal models.
Hitchcock (2007), Hall (2007), Halpern and Hitchcock (2015), and Halpern
(2015) all aim to solve the problem by taking into account default or nor-
mality considerations. The underlying idea is that the status of genuine
causes depends on being deviant from what is normal (Beebee, 2004; Mc-
Grath, 2005). On this view, genuine effects are brought about by causes that
are more deviant from normality than its non-actual alternatives. Gallow
(2021) goes even further by elevating the transmission of deviancy to the
mark of causation: an event is a cause in virtue of transmitting its deviancy
to its effect.

We also aim to resolve the problem of isomorphic causal models by a
condition of deviancy. But what is deviancy? For now, we follow Gallow
(2021, p. 54) in saying that prima facie an occurring event is more deviant
than its absence. But this is just a first approximation. The question of
what constitutes deviancy is more intricate. We will discuss it later.

To amend our theory by a deviancy condition, we need the notion of a root
proposition. We say a proposition F of particular fact is a root proposition
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in a causal model ⟨L,F ⟩ iff there is no direct non-redundant regularity for
F or ¬F in L. Finally, let Fr denote the set of root propositions in F .

We amend now our theory by a condition of deviancy. The condition
applies to all genuine causes for the effect under consideration and to
all root propositions which are not in the maximised minimal set F ′ of
propositions of particular fact that are jointly sufficient for the effect in
the presence of the direct non-redundant regularities. It says that all such
genuine causes and root propositions have to be more deviant than their
negation. To be precise, we require the following condition in addition to
conditions (1)-(3):

(4) for all F ∈ F \ F ′, if F ≡ C or F ∈ Fr, then F is more deviant than ¬F.

The deviancy condition (4) says that, for c to be a cause of e, the proposition
C and each root proposition F that is not in the maximised minimal set F ′

of propositions of particular fact must be more deviant than its respective
negation. On the amended theory, causation is thus understood as deviant
forward-directed inferability along direct non-redundant regularities.

How does our amended theory treat bogus prevention? Well, we know
from the isomorphism between overdetermination and bogus prevention
that f counts as a cause of the non-occurrence of any event e of type E—or
simply e’s absence—on our preliminary theory for F ′ = ∅. However, the
deviancy condition is violated. ¬D is a root proposition of particular fact
that is not in F ′ = ∅, but ¬D is less deviant than D. Therefore, f is not a
cause of e’s absence. d’s absence is normal and so is likewise no cause of
e’s absence. Or so says our amended theory.

Bogus prevention illustrates the underlying rationale of condition (4). The
root propositions in F \ F ′ are causes or backup causes if they are more
deviant than their negations. Otherwise they would remain inF ′ in virtue
of its maximality. In the bogus prevention scenario, d’s absence and f ’s
occurrence are no causes because of the normality of the root proposition
¬D. The normality of non-occurrence of any event of type D entails that
d’s absence and f ’s occurrence are no causes.

Like the simple causal model accounts, Baumgartner’s (2013) regularity
theory wrongly says that d’s absence and f ’s occurrence are causes of e′s
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absence (p. 105). He prefers this result over a relativization of causation
to normality or typicality (p. 106). This is where we fundamentally part
ways. We take our pre-theoretic understanding of the causal relation in
the bogus prevention scenario at face value.

This being said, Baumgartner aims for a proof of concept that his regularity
theory could be enriched by a notion of normality or typicality—much
like simple causal model accounts (p. 106). And indeed, he shows how
his regularity theory so enriched can account for the bogus preventer f
by disregarding an atypical but empirically possible situation—possible
according to the type-level structure of bogus prevention.

He assumes that the least typical empirical possibility is the one in which
some token events of type D and of type F occur. By disregarding this
empirical possibility, a token event of type E occurs just in case one of type
D occurs. The non-redundant regularity simplifies to E↔ D. ¬F does not
figure any longer in the non-redundant regularity. And so f ceases to be
a cause of e’s absence on his enriched theory. But d’s absence remains a
cause of e’s absence. And this goes against our commonsense judgment:
the normal absence of poison does not cause target’s survival.

4.2 Omissions

Omissions pose another problem for many theories of causation. In a
scenario of omission, an event fails to occur and so another event occurs.
However, had the event occurred, it would have prevented the other event
from occurring. The basic structure of omissions can be represented by
Figure 4.

F

C

E

Figure 4: Omission.
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An event c of type C occurs and brings about an event e of type E. No
event f of type F occurs. However, had an event f of type F occurred, it
would have prevented e from occurring. Here is the causal model for the
scenario of omission.

E↔ ¬F∧C
¬F, C, E

Relative to this causal model, f ’s absence is not a cause of e, given the above
convention about deviancy. For this to be seen, observe that conditions (2)
and (3) are only satisfied for F ′ = {C}. But then condition (4) is violated:
¬F ∈ F \ F ′ and ¬F is a root proposition, and yet ¬F is less deviant than
F.4

Indeed, many omissions are no causes. Putin’s failure to water my plant,
for example, did not cause it to dry up and die. However, some omissions
intuitively do count as causes. My neighbour promised me to water my
plant, but she didn’t and it died. Here my neighbour’s failure to water my
plant should count as a cause of its death (McGrath, 2005). Our theory can
capture this phenomenon if we refine our notion of deviancy.

We have said that prima facie an occurring event is more deviant than its
absence. We say now in addition that the absence¬A of any event of type A
is more deviant than an event of type A if ¬A violates a norm that is active
in the scenario under consideration (Beebee, 2004; Andreas et al., 2022).
My neighbour’s omission to water my plant is an absence that violates the
active norm of promise-keeping. My neighbour deviated from this norm
and so her omission is more deviant than its negation. Our theory says
then that my neighbour’s failure to water my plant is a cause of the plant’s
death. Putin, by contrast, did not promise to water my plant. His omission
is thus less deviant than his watering my plant, and so does not count as a
cause of my plant’s death. Or so says our theory.

We have illustrated how condition (4) helps overcome the problem of
isomorphic causal models and how it accounts for simple scenarios of
omission. As to the latter, deviant omissions are genuine causes, non-
deviant ones are not. In general, a genuine cause is deviant and allows
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to infer its effect in a forward-directed way along direct non-redundant
regularities.

Baumgartner’s (2013) theory says that all omissions of f in the above
scenario are causes of e. There is only one set of actual conditions that
are jointly sufficient for e to occur in the presence of the non-redundant
regularity: {¬F, C}. What does his theory say when we enrich it by some
typicality ranking?

Observe that the non-redundant regularity of the omission scenario is
of the same form as the one of bogus prevention. There Baumgartner
assumed that the empirical possibility in which token events of type F and
type C occur is less typical than any other. By disregarding this empirical
possibility, an event of type E occurs just in case one of type C occurs. The
non-redundant regularity of the scenario simplifies to E ↔ C. And so the
default omission of f ceases to be a cause of e on his enriched theory. So
far so good.

There is, however, work left. Baumgartner has not yet said how normality,
typicality, or deviancy are supposed to figure in the confines of his theory
in general. It remains unclear how his enriched regularity theory applies
to arbitrary causal scenarios.

4.3 Entanglements

Another problem comes from causes that are entangled with one another.
We first illustrate the problem and then refine our theory in response.
Consider a structure, where two type causes A and C are necessary for an
effect E to occur. Moreover, A and C are entangled: one of them is a type
cause of the other. And let’s say in the actual scenario a token event of
each type occurs. Figure 5 graphically represents this scenario, where the
thick circle around E means that both A and C are necessary for E.
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C

E

Figure 5: Subcause.

We say that C is here a subcause of A. Here is the causal model for this
subcause scenario.

C↔ A
E↔ C∧A
A, C, E

Entangled causes are tightly related. Here, the subcause C depends directly
and exclusively on the ‘supercause’ A. Given the direct non-redundant
regularities, the occurrence of some token event of type E is determined
by whether or not some token event of type A occurs. In this sense, the
type-cause C is subordinate to the type-cause A.

Our present theory of causation does not count the token event of type
C as a cause of the token event of type E. For this to be seen, note that
⟨L,F ′⟩ ̸|= E only for F ′ = ∅. But then ⟨L, ∅⟩[F ′][{C}] ̸|= E. However, this
seems to be the wrong verdict.

Why does our present theory of causation fail for entangled causes? Well, it
seems that the tight connection between entangled causes like A and C is the
culprit. A solution is thus to cut this tight connection between entangled
causes by removing non-redundant regularities from the causal model.
In the subcause scenario, this means we could cut the tight connection
between the subcause C and its supercause A by removing the direct non-
redundant regularity C ↔ A. We thus generalize our theory of causation
as follows.

Definition 2. Let ⟨L,F ⟩ be a causal model such that F |= L. c is a cause
of e relative to ⟨L,F ⟩ iff there is a setL′ ⊆ L and a set F ′ ⊆ F such that all
of the following conditions are satisfied:
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(1) ⟨L,F ⟩ |= C∧ E.

(2) ⟨L′,F ′⟩ ̸|= E, and there is noF ′′ so thatF ′ ⊂ F ′′ ⊆ F and ⟨L′,F ′′⟩ ̸|=
E.

(3) ⟨L′, ∅⟩[F ′][{C}] |= E.

(4) For all F ∈ F \ F ′, if F ≡ C or F ∈ Fr, then F is more deviant than ¬F.

This proper generalization of our amended theory solves the subcause
scenario. For this to be seen, take L′ = {E ↔ C ∧A} and F ′ = {A}. Well
then, condition (2) is satisfied, and so are conditions (3) and (4). Hence, the
occurring token event c of type C is a cause of the occurring token event e
of type E, as desired.5

4.4 Non-Transitivity

A final challenge for the current theory arises from causal scenarios which
suggest that causation is not transitive. The transitivity of causation means
this: whenever a token event c of type C is a cause of one of type A and
the one of type A is a cause of a token event e of type E, then c is a cause
e. It seems often plausible to judge c a cause of e if you judge c a cause
of a and a a cause of e. However, several scenarios have been put forth
which suggest that our causal judgments are not transitive (McDermott,
1995; Lewis, 2000; Paul, 2000).

One of the examples against transitivity is due to Hitchcock (2001, p. 276).
A boulder is dislodged and rolls toward a hiker. The hiker sees the boulder
coming and ducks, so that she does not get hit by the boulder. If the hiker
had not ducked, however, the boulder would have hit her.

The boulder scenario seems to show that there are cases where causation
is not transitive: the dislodged boulder causes the ducking of the hiker,
which in turn causes the hiker to remain untouched by the boulder. But
it is counterintuitive to say that the dislodging of the boulder causes the
hiker to remain unscathed. Unlike other accounts, our theory does not rely
on transitivity to handle certain causal scenarios. We are thus free to deny
that our causal judgment is invariably transitive.

20



The structure of the boulder scenario can be represented by Figure 6 (Gal-
low, 2021, p. 53).

EB

DF

Figure 6: Short Circuit.

Hall (2007, p. 36) calls this structure a short circuit: the boulder’s dislodge-
ment ( f ) threatens to hit the hiker by a rolling boulder (b), and at the same
time provokes an action—the ducking (d)—that prevents this threat from
being effective: no token event e of type E occurs.

The token event f should not count as a cause of the absence of any event
e of type E, because f creates and cancels the threat to bring about some
token event e of type E (Paul and Hall, 2013, p. 216). Our current analysis,
however, says that f is a cause of e’s absence. To see this, consider the
causal model of the boulder scenario:

B↔ F
D↔ F
E↔ B∧¬D
F, B, D,¬E

Take L′ = {D ↔ F, E ↔ B ∧ ¬D} and F ′ = {B}. Then condition (2) is
satisfied, and so are the conditions (3) and (4).

What went wrong? Well, it seems that f comes out as a cause of e’s
absence because we disregard that F is type-causally connected to E via
B. By removing the direct non-redundant regularity B ↔ F, we loose
the information that f creates a threat to bring about e’s occurrence. But,
intuitively, this information seems to be crucial to determine whether f is
a cause of e’s absence. And so it seems to be unwarranted to neglect one
of the type-causal paths from F to E.
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The generalization of our theory to handle scenarios of entangled causes
overshoots. Removing arbitrary direct non-redundant regularities fromL
can lead to counterintuitive results, as the boulder scenario illustrates. In
response, we put a constraint on which direct non-redundant regularities
can be removed. The idea is this: when testing whether a token event c of
type C is a cause of a token event e of type E, the causal paths from C to E
need to remain intact.

To implement the idea that constrains the removal of direct non-redundant
regularities, we introduce some terminology. Recall that A ↔

∨
i
∧
Ai is

the direct non-redundant regularity of A. We say A is a child variable of
the parent variables appearing as subformulas in some Ai. Let B be one
of the parent variables appearing in some Ai. A is then one of its first
descendants. The child variables of A are the child variables of one of B’s
child variables and so are among B’s second descendants. And so on. The
descendants of B are the variables you can reach by following the child
relation. In general, the descendants of some variable B are the variables
in the transitive closure of the child relation starting from B. Finally, let B
be a proposition of the form D or ¬D, where D is a propositional letter. We
then say that the descendants of B are all the variables (of the causal model
under consideration) which are descendants of the variable D of which B
is a proposition.

For our final theory of causation, we require the following condition in
addition to conditions (1)-(4):

(5) For all descendants A of C, the direct non-redundant regularity of A
is in L′.

Condition (5) ensures that the causal paths starting from a candidate
cause C remain in L′. On our final theory, causation is understood as
deviant forward-directed inferability along the causal paths of direct non-
redundant regularities from cause to effect. We show now how this condi-
tion helps to handle scenarios that challenge the transitivity of causation.
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4.4.1 Short Circuit

Let us, first, reconsider the boulder scenario of Figure 6. f does no longer
count as a cause of e’s absence. For this to be seen, observe that all variables
are descendants of F. Condition (5) thus prohibits to remove any direct
non-redundant regularity fromL. As a consequence, there is noL′ andF ′

so that condition (2) is satisfied. Even forF ′ = ∅, the direct non-redundant
regularities entail ¬E.

By contrast, d counts as a cause of e’s absence. For this to be seen, observe
that F is not a descendant of D. Hence, the direct non-redundant regularity
D ↔ F can be removed from L. Take L′ = {B ↔ F, E ↔ B ∧ ¬D} and
F
′ = {F, B}. ⟨L′,F ′⟩ does not entail ¬E, and F ′ is maximal: any strict

superset ofF ′would entail¬E in the presence of the direct non-redundant
regularities in L′. But, of course, ⟨L′, ∅⟩[F ′][{D}] |= ¬E.

On Baumgartner’s (2013) theory, the type-level structure of the boulder
scenario is empirically equivalent to the type level structure L = {B ↔
F, D ↔ F,¬E ↔ F ∨ ¬F}. A situation in which B and ¬D are true is
impossible according to this and the original type-level structure of the
boulder scenario. In both, there are only two empirically possible situations
over the four variables: {F, B, D,¬E} and {¬F,¬B,¬D,¬E}. The type-level
structure of the boulder scenario only allows for empirical possibilities, in
which no token event of type E occurs. And so it is empirically equivalent
to a type-level structure including the indirect non-redundant regularity
¬E↔ F∨¬F but without the regularity E↔ B∧¬D. This shows, so argues
Baumgartner, that the latter regularity is empirically redundant (pp. 101-4).
After all, the indirect non-redundant regularity says that a token event of
type E never occurs.

The two type-level structures are empirically equivalent: the situations
compatible with the respective non-redundant regularities coincide. How-
ever, we think that the type-level structure of the boulder scenario is a
conceptual possibility for which a theory of causation should be able to
account for. And while Baumgartner’s theory correctly says that f is not
a cause of e’s absence, it also says that d is not a cause of e’s absence. The
latter is wrong on our understanding of the causal relation. After all, we
judge the hiker’s ducking to be a cause of her remaining untouched by the
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boulder.

4.4.2 Extended Double Prevention

In a scenario of double prevention, an event prevents another event which—
had it occurred—would have prevented a third event. Hall (2004, p. 247)
presents an extension of a simple scenario of double prevention, which
we call extended double prevention. The structure of this scenario can be
represented by Figure 7:

A E

DB

CF

Figure 7: Extended Double Prevention.

Here the event of type C double prevents the event of type E because C
prevents an event of type D from occurring that—had it occurred—would
have prevented the occurring event of type E. In the present scenario,
however, the occurring events of type B and of type C have an occurring
common cause of type F, and the subgraph F− B−C−D is a short circuit.
F starts a process via B that threatens to prevent E. At the same time, F
initiates another process via C that prevents the threat. F cancels its own
threat—the threat via B—to prevent E. Paul and Hall (2013, p. 216) argue,
among others, that F is not a cause of E in extended double prevention.

Here is the causal model for the scenario of extended double prevention.

24



B↔ F
C↔ F
D↔ B∧¬C
E↔ A∧¬D
A, F, B, C,¬D, E

Relative to this causal model, f is not a cause of e. For this to be seen,
observe first that all non-root variables are descendants of F. Condition
(5) prohibits to remove any direct non-redundant regularity from L. Any
set F ′ of particular facts that is supposed to satisfy condition (3) needs
to contain A; otherwise ⟨L′, ∅⟩[F ′][{F}] ̸|= E. However, if A ∈ F , then
condition (2) is violated: ⟨L′,F ′⟩ |= E.6

On Baumgartner’s (2013) theory, the type-level structure of extended dou-
ble prevention is empirically equivalent to the type-level structure L =
{B ↔ F, C ↔ F, E ↔ A} (see pp. 101-2). As a consequence, a is the only
cause of e. The double preventer c, in particular, does not count as a cause
of e.

4.4.3 Modified Extended Double Prevention

In Figure 8, Paul and Hall (2013, p. 198-9) ask us to consider a slight mod-
ification of extended double prevention by ‘adding a non-occurring event
of type G’.
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Figure 8: Modified Extended Double Prevention.

Paul and Hall argue that ‘the original verdict stands:’ f is not a cause
of e because no event of type G occurs and this non-occurrence does not
make any difference (p. 199). Here is the causal model for the scenario of
modified extended double prevention.

B↔ G∨ F
C↔ F
D↔ B∧¬C
E↔ A∧¬D
A,¬G, F, B, C,¬D, E

Relative to this causal model, f is not a cause of e. For this to be seen,
observe first that all non-root variables are descendants of F. Condition (5)
prohibits to remove any direct non-redundant regularity from L. There
are only two cases in which ⟨L′,F ′⟩ meets condition (2). First, take F ′ =
{¬G,¬D}. But then condition (3) is violated: ⟨L′, ∅⟩[F ′][{F}] ̸|= E.

Second, take F ′ = {A, B}. In this case, ¬G is in F \ F ′ and ¬G ∈ Fr. Since
¬G is less deviant than G, condition (4) is violated. We have shown that f
is not a cause of e in the scenario of modified extended double prevention.

On Baumgartner’s (2013) theory, f counts as a cause of e. The type-level
structure of modified extended double prevention is empirically accurate,
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and yet his theory delivers the wrong result. This being said, his enriched
theory could obtain the correct result, if the empirical possibility, in which
a and f occur but g does not, is less typical than the other empirical
possibilities. But this condition is hard to assess because Baumgartner did
not yet tell us what makes one empirical possibility more or less typical
than another.

4.4.4 Isomorphic Modified Extended Double Prevention

Paul and Hall (2013, pp. 198-9) consider a scenario that is isomorphic to
modified extended double prevention. They represent it by Figure 9.

A E

DB

HC

G

Figure 9: Isomorphic Modified Extended Double Prevention.

In this scenario, the occuring event of type E requires that both an event of
type A and one of type D occurs. Paul and Hall (2013, p. 199) argue that
this time c clearly is a cause of e. Here is the causal model for the scenario
of isomorphic modified extended double prevention.

B↔ G∧¬C
H↔ C
D↔ B∨H
E↔ A∧D
A, G, C,¬B, H, D, E
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Relative to this causal model, c is a cause of e. Take L′ = L and F ′ =
{A,¬B}. Then condition (2) is satisfied: ⟨L′,F ′⟩ ̸|= E, and F ′ is maxi-
mal: any strict superset of F ′ would entail E in the presence of the di-
rect non-redundant regularities. And condition (3) is satisfied as well:
⟨L
′, ∅⟩[F ′][{C}] |= E. Condition (4) is satisfied as well: G is in F \ F ′ and

G ∈ Fr, but G is also more deviant than ¬G. And condition (5) is trivially
satisfied since we did not remove any direct non-redundant regularity. We
have shown that c is a cause of e in the scenario of isomorphic modified
extended double prevention.7

4.4.5 Switch

Switching scenarios are paradigmatic for causal scenarios where our causal
judgments are not transitive. In switching scenarios, some occurring event
of type F helps determine the causal path by which another event is brought
about. Crucially, the other event would also occur via an alternative causal
path if no event of type F had occurred.

To make it more concrete, consider a story provided by Hall (2000, p. 205).
Flipper is standing by a switch in the railroad tracks. A train approaches
in the distance. She flips the switch, so that the train travels down the
right track, instead of the left. Since the tracks reconverge up ahead, the
train arrives at its destination all the same. The commonsense judgment is
that flipping the switch is not a cause of the train’s arrival—even though
flipping the switch is a cause of the train’s travelling on the right track, and
the train’s travelling on the right track is a cause of the train’s arrival (Paul
and Hall, 2013, p. 232).

The structure of this switch scenario can be represented by Figure 10:
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Figure 10: Switch.

The flipping of the switch f causes the train to travel on the right track r
and prevents the train from travelling on the left track l. And the travelling
on the right track r causes the train to arrive at its destination e. However,
the flipping of the switch f arguably is not a cause of the train’s arrival e.
Here is the causal model for the switch scenario.

L↔ ¬F
R↔ F
E↔ L∨R
F,¬L, R, E

Relative to this causal model, f is not a cause of e. For this to be seen,
observe first that all variables are descendants of F. Condition (5) thus
prohibits to remove any direct non-redundant regularity fromL. But then
there is no F ′ so that condition (2) is satisfied. Even for F ′ = ∅, the direct
non-redundant regularities entail E.

By contrast, f is a cause of r. Take L′ = L and F ′ = {E}. Condition (2)
is then satisfied: ⟨L′,F ′⟩ ̸|= R, and F ′ is maximal: any strict superset of
F
′ would entail R in the presence of the direct non-redundant regularities.

The other conditions are trivially satisfied.

Likewise, r is a cause of e. TakeL′ = {L↔ ¬F, E↔ L∨R} andF ′ = {F,¬L}.
Condition (2) is then satisfied because ⟨L′,F ′⟩ ̸|= E, and F ′ is maximal:
any strict superset of F ′ would entail E in the presence of the direct non-
redundant regularities. The other conditions are trivially satisfied.
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The representation of switching scenarios is somewhat controversial. Our
theory of causation delivers the desired results for the ‘basic’ switch dis-
cussed by Paul and Hall (2013, p. 232), for the more realistic switches
discussed by Hitchcock (2009, p. 395-6), and also a switch discussed by
Halpern (2016, p. 72). We leave it to the reader to verify that our final the-
ory of causation delivers also the desired results for all of the previously
mentioned scenarios.

On Baumgartner’s (2013) theory, the type-level structure of our simple
switch is empirically equivalent to L = {L ↔ ¬F, R ↔ F, E ↔ F ∨ ¬F}.
And so there is no cause of e. r does, in particular, not count as a cause of
e. This being said, Baumgartner’s theory delivers the correct verdicts for
Paul and Hall’s basic switch.

5 Reductiveness

We have proposed a regularity theory of causation. On our preliminary
theory, a cause is each member of any maximised minimal set of actual
conditions which are jointly sufficient in a forward-directed way for the
effect to occur in the presence of the direct non-redundant regularities.
Causation so understood is forward-directed inferability along direct non-
redundant regularities. The direct non-redundant regularities are material
bi-implications obtained from true propositions of particular fact and min-
imization procedures. Causation is thus reduced to true propositions of
particular fact.

However, our causal relation is so far relative to a set of selected variables.
For the true non-redundant regularities are direct relative to a variable
set (see Section 2). Extending the variable set under consideration may
render direct non-redundant regularities indirect. Even worse, an exten-
sion of the variable set may render a non-redundant regularity redundant
(Baumgartner, 2013, pp. 93-4). This poses the metaphysical question how
we can identify causation in the world, as opposed to causation in a model
containing a limited amount of variables.

Our answer has two parts. First, causation in the world requires each non-
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redundant regularity to be stable—to remain non-redundant under any apt
extension of the variable set. An extension of a variable set is apt just
in case the additional variables do not introduce dependences among the
variables that are stronger than causation, such as logical or mereological
relations, supervenience, or grounding. Stable regularities are not relative
to a particular variable set because they remain non-redundant under any
apt extension.

Second, we say that a stable regularity
∨

i
∧
Ai ↔ E is metaphysically direct

iff there are no stable regularities
∨

j
∧
B j ↔ C and

∨
k
∧
Ck ↔ E, where the

same variable appears as subformula in someAi and someB j, while C ap-
pears as subformula in some Ck. Metaphysically direct regularities inherit
from stable regularities that they are not relative to a particular variable
set. And they remain metaphysically direct under each apt extension of
the variable set.

Metaphysically direct regularities allow us to define causation without
model relativity. We say c is a cause of e iff there is a set L′ ⊆ L of
metaphysically direct regularities and a set F ′ ⊆ F of propositions of
particular fact such that our conditions for causation are satisfied. This way
to avoid model relativity may well lead to very fine-grained metaphysically
direct regularities. But it is also a way to reduce causation in the world to
true propositions of particular fact.

We have amended our preliminary theory by a condition of deviancy.
Causation so understood is deviant forward-directed inferability along
direct non-redundant regularities. We have said that occurring events are
prima facie more deviant than their absences (Section 4.1). We could have
said instead that occurring events have a metaphysically different status
from their absences. This metaphysical postulate would have saved that
our amended theory reduces causation to true propositions of particular
fact. And it still solves the problem of isomorphic causal models and
accounts for the non-causal status of many omissions. However, some
omissions are judged to be causes.8 The reason seems to be that the latter,
but not the former, violate some norm. This is why we said in addition that
an absence is more deviant than an event if the absence violates a norm
active in the scenario under consideration. Causation is thus reduced to
true propositions of particular fact and deviancy from norms.
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Blanchard and Schaffer (2017) criticise the distinction between default and
deviant events. Consider the causal model for bogus prevention in Section
4.1. They claim that this causal model is not apt for the scenario where no
poison is administered because it lacks essential structure: a variable for
whether or not the administered antidote neutralizes some poison. The
causal model so enriched is not isomorphic to overdetermination and the
administration of antidote is no cause of target’s survival. This solution,
so they conclude, shows that we do not need a default-deviant distinction
but apt causal models.

Indeed, the metaphysically direct regularities presumably entail that a neu-
tralization event occurs only if a poisoning event and an administration
of antidote event occurs. One must wonder, however, whether there are
no causal scenarios that share the simple structure of bogus prevention. It
seems at least conceptually possible that E↔ ¬F∧D is a true metaphysi-
cally direct regularity of some scenario, in which an event of type F occurs,
but no events of types D and E. But then the bogus preventer of type F is
not a cause of the absence of type E. Blanchard and Schaffer still need to
explain this verdict.

There is, of course, more to say about deviancy, norms, and the distinction
between occurring events and absences. Hitchcock and Knobe (2009) argue
that our judgement of causation is influenced by statistical and moral
norms, as well as norms of proper functioning. However, they dodge the
questions of what norms are in the first place and when they are active in a
certain scenario. These are open problems. Another is that the distinction
between occurring events and absences is not always clear cut. Is, for
example, the death of a plant an occurring event, or rather the absence of
continued living? It seems that this depends on the involved norms. Is
it normal that plants continue to live? Or is being alive the deviant state
to being dead? The distinction between occurring events and absences
seems to be related to the deviancy from norms. But an investigation of
this relation must await another occasion.

We have further amended our theory by a condition which ensures that
the causal paths from a cause to its effect remain intact. Causation so
understood is deviant forward-directed inferability along the causal paths
of direct non-redundant regularities from cause to effect. The further
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amendment helps to handle scenarios that challenge the transitivity of
causation, like short circuits and switches. Our final regularity theory
thus accounts for our judgments on a wide range of causal scenarios—
wider than Baumgartner’s (2013) theory. We summarize the results in the
Conclusion.

Except for perhaps norms, our regularity theory has no need for any modal
notions. It does neither rely on a notion of nomic sufficiency (Hausman,
1998), nor on a notion of epistemic inferability (Andreas and Günther,
2019; Andreas and Günther, 2021a, 202xa). It does likewise not rely on
counterfactuals. The latter distinguishes our theory from many contem-
porary theories of causation (Ramachandran, 1997; Lewis, 2000; Yablo,
2002; Woodward, 2003; Hall, 2004, 2007). These counterfactual theories are
not reductive if they rely on antecedently given causal structures—as they
often do in the form of given causal models (Hitchcock, 2001, 2007; Hiddle-
ston, 2005; Halpern and Pearl, 2005; Halpern, 2016; Andreas and Günther,
2021b; Gallow, 2021). Hitchcock (2001) and Halpern and Hitchcock (2010)
offer some guidelines on what constitutes an apt causal model. But the
question is not fully answered (Blanchard and Schaffer, 2017).

Our regularity theory, by contrast, has no need for discerning apt from non-
apt causal models. It tells us what causes what relative to a particular causal
model understood as a tuple of true direct non-redundant regularities and
true propositions of particular fact. And we have proposed a way how
we could avoid this model-relativity if we had the metaphysically direct
regularities at our disposal.

6 Conclusion

We have put forth a regularity theory of causation. The theory says, in
essence, that causation is deviant forward-directed inferability along the
causal paths of direct non-redundant regularities. The verdicts of our
theory aligns with our pre-theoretic understanding of the causal relation
in the considered set of scenarios. In virtue of its deviancy condition, the
theory can account for the problem of isomorphic causal models and the
problem of omissions. It can, furthermore, account for entangled causes
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and scenarios that challenge the transitivity of causation. The following
table summarizes the results of our regularity theory in comparison to
Baumgartner’s (2013).

Causes of e or ¬e Baumgartner (2013) Our Regularity Theory
Overdetermination c, a c, a
Preemption c, d c, d
Bogus Prevention ( f ),¬d −

Default Omission (¬ f ), c c
Deviant Omission (¬ f ), c ¬ f , c
Subcause c, a c, a
Short Circuit − d
Extended DP a c, a
Mod. Extended DP ( f ), c,¬d, a c, a
Iso. Mod. Extended DP c, h, d, a c, h, d, a
Simple Switch − r

The table shows the causes of e or e’s absence—here abbreviated by ¬e—in
the respective causal scenario. Expressions like ( f ) mean that a suitable
notion of typicality or deviancy could undo the causal status of the token
event f on Baumgartner’s theory. ‘DP’ stands for Double Prevention.

In the scenario of bogus prevention, there is no poisoning and target sur-
vives. The absence of poison in target’s coffee, here ¬d, is as much a cause
of her survival as the absence of someone stabbing her or the absence of
someone shooting her: the absences are not deviant and so are no causes.
Bodyguard’s putting antidote into her coffee f is in this scenario likewise no
cause of her survival. Baumgartner can secure the latter but not the former
verdict by imposing a certain typicality ranking on bogus prevention.

We have discussed a short circuit scenario. A boulder is dislodged and
rolls toward a hiker. The hiker sees the boulder coming and ducks, so that
the boulder does not hit her. Had she not ducked, however, the boulder
would have hit her. The dislodgement of the boulder f is no cause of the
hiker’s remaining unscathed. Our theories agree. The hiker’s ducking d
is a cause of the hiker’s remaining untouched by the boulder. Our theory
says so, but Baumgartner’s does not. A similar point applies to our simple
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switch. The train travelling on the right track r causes the train to arrive
at its destination. Our theory says so, unlike Baumgartner’s. The table
shows further differences.

We think our theory aligns with our pre-theoretic judgments about causa-
tion, and more so than Baumgartner’s. This is no wonder in a sense: our
theory aims to be conceptually accurate, whereas Baumgartner’s seems to
aim for empirical accurateness. And it may well turn out that his theory
is empirically more accurate—perhaps scenarios like simple short circuits
and simple switches have no empirical causal structure. But even if it
should turn out this way, these scenarios seem to be conceptually pos-
sible. And so a conceptually accurate theory should still align with our
commonsense understanding of causation.

We have set out to propose a regularity theory which reduces causation
to true propositions of particular fact and deviancy from norms. And
we have come a long way. We have defined direct non-redundant regu-
larities in terms of true propositions of particular fact and minimization
procedures. In turn, we have defined causal models in terms of direct
non-redundant regularities and propositions of particular fact. The regu-
larity theory we proposed says what causes what relative to such a causal
model. Finally, we have made a metaphysical proposal of how to avoid
the model-relativity.

Our regularity theory is, however, still incomplete. We haven’t said much
on what norms are and when events deviate from norms in a given sce-
nario. We have also bracketed the question whether or not norms can be
reduced to propositions of particular matter of fact. It seems to us that
the relation between the deviancy from norms and the distinction between
events and absences, in particular, deserves more attention.

We generally obtain the direction of causation via the direct non-redundant
regularities. However, this strategy does not work for scenarios where
some type effect has only a single type cause. We have pointed toward
solutions for these simplistic but conceptually possible scenarios due to
Baumgartner (2013) and Andreas and Günther (202xc). But a comprehen-
sive treatment in the confines of our theory is left for future work.9

There is no doubt: more work is to be done. But for now, we may hope to be
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one step closer to a regularity theory that grounds the type relation of cause
and effect in matters of particular fact and aligns with our understanding
of token causation.

Department of Economics, Philosophy and Political Science,
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Munich Center for Mathematical Philosophy,

LMU Munich

Notes

1We set the issue of indeterministic causation aside.

2True propositions of particular fact describe actual events and absences—events and
absences of the actual world ranging from the most distant past to the farthest future.

3∨
i
∧
Ai is short for

∨
i≤n

∧
Ai, where n is the cardinality of C. Likewise,

⋃
iAi is short

for
⋃
i≤n
Ai.

4By contrast, c is a cause of e. Take F ′ = {¬F}. Conditions (2) and (3) are then satisfied.
And since ¬F is not in F \ F ′, condition (4) is trivially met.

5Baumgartner’s (2013) theory correctly says that both token events of type A and C,
respectively, are causes of the token event of type E. Beckers (2021, pp. 1361-3) puts forth
a series of six scenarios in order to support his causal model account of causation and to
challenge others. The latter four scenarios contain entangled causes. We leave it to the
reader to verify that our theory delivers the commonsense results Beckers desires.

6By contrast, c is a cause of e. Take F ′ = {F, B, A} and L′ = L \ {C ↔ F}. Conditions
(1)-(5) are then met.

7Baumgartner’s (2013) theory correctly says that c is a cause of e (see pp. 101-2).

8This claim is somewhat controversial. Beebee (2004) argues that omissions are never
causes. Dowe (2000, Ch. 6) argues that omissions are no genuine causes, but may figure
in true counterfactual claims about genuine causation. We are convinced by McGrath
(2005) who argues that the causal status of omissions depends on norms.
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9In Andreas and Günther (202xa), we further develop the present regularity theory
but without aiming for reductivity. We show in this sequel paper that there is another
challenge to the reductivity of Baumgartner’s theory and ours. We do not think that this
challenge is insurmountable. Unfortunately, we discovered it too late for dealing with it
here. A solution must await another occasion.
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